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Abstract We define Hecke operators for vector valued modular forms transforming with
the Weil representation associated to a discriminant form. We describe the properties of the
corresponding algebra of Hecke operators and study the action on modular forms.
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1 Introduction

Hecke operators are a fundamental tool in the study of modular forms. They can be used to
obtain information on the arithmetic nature of the Fourier coefficients. They are vital for the
definition of L-functions associated to modular forms and for understanding their properties.
The theory of Hecke operators is well developed for scalar valued modular forms [19].

In many recent works, vector valued modular forms associated to the Weil representation
play an important role, see, e.g. [2–4,12,18]. For instance, Borcherds uses them to provide
an elegant description of the Fourier expansion of various theta liftings. The purpose of the
present paper is to develop the foundations of a Hecke theory for such vector valued modular
forms. It is intended as a first step towards a more comprehensive Hecke theory, which should
have many important applications. For instance, one could employ it to study the properties
of the Borcherds lift and the Kudla–Millson lift. One could try to obtain trace formulas and
multiplicity one theorems comparable to the work of Skoruppa and Zagier for Jacobi forms,
see [21,22]. Our results can be used to associate an L-function to a vector valued modular
form. It can be viewed as a variant of the standard L-function.
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250 J. H. Bruinier, O. Stein

We now describe the content of this paper in more detail. Let L be a non-degenerate even
lattice of type (b+, b−) and level N . The modulo 1 reduction of the quadratic form on the
dual lattice L ′ defines a Q/Z-valued quadratic form on the discriminant group A = L ′/L . To
simplify the exposition, we assume throughout the introduction that the signature sig(L) =
b+ − b− of L is even. In the body of the paper, both, odd and even signature is treated.

The Weil representation associated to the discriminant form A is a unitary representation
of � = SL2(Z) on the group ring C[A],

ρA : � −→ U(C([A])),
defined by (2.3), (2.4). It factors through the finite quotient

S(N ) := SL2(Z/NZ) ∼= �/�(N ).

Let k ∈ Z. A holomorphic function f : H → C[A] is called a modular form of weight k
and type ρA for the group �, if

f (Mτ) = (cτ + d)kρA(M) f (τ )

for all M = (
a b
c d

) ∈ �, and f is holomorphic at the cusp ∞. We denote the vector space of
such holomorphic modular forms by Mk,A, and write Sk,A for the subspace of cusp forms.

In order to define Hecke operators on vector valued modular forms of type ρA, we need
to extend the representation ρA to a sufficiently large subgroup of GL+

2 (Q). A natural start-
ing point is to try to extend ρA, viewed as a representation of S(N ), to a representation of
G(N ) := GL2(Z/NZ). However, it was observed by E. Freitag that such an extension does
not exist in general, see Example 3.1.

Here we consider the subgroup

{M ∈ G(N ); det(M) ≡ � (mod N )}
of matrices whose determinant is a square modulo N . It has the extension

Q(N ) = {(M, r) ∈ G(N ) × U (N ); det(M) ≡ r2 (mod N )},
where U (N ) denotes the unit group of Z/NZ. The group Q(N ) is isomorphic to S(N ) ×
U (N ). Consequently, we may extend the Weil representation to Q(N ) by taking the tensor
product of ρA on S(N ) and a suitable character on U (N ), see Proposition 3.3.

If M is an element of G(N ) whose determinant is a square modulo N , and r, r ′ ∈ U (N )

with det(M) ≡ r2 ≡ r ′ 2 (mod N ), then (M, r) and (M, r ′) both belong to Q(N ). We prove
that the action of ρA(M, r) and ρA(M, r ′) on C[A] differ only by the action of an element
of the orthogonal group O(A), see Proposition 3.5.

This extension of the Weil representation can be used to define a Hecke operator T (M, r)

on Mk,A for every pair (M, r), where M ∈ M2(Z) and r ∈ U (N ) with det(M) ≡ r2

(mod N ). We compute the action of these operators on the Fourier expansion of a modular
form (see Sect. 4.1). They generalize the classical Hecke operators on scalar valued modular
forms and Jacobi forms (see, e.g. Remarks 4.4 and 4.11).

In particular, for every positive integer m coprime to N we obtain a Hecke operator

T (m2)∗ := T
((

m2 0
0 1

)
, m

)

on Mk,A. These operators generate a commutative subalgebra of End(Mk,A), which is actu-
ally already generated by the T (p2)∗ for p prime and coprime to N . The operators T (m2)∗
take cusp forms to cusp forms and are self-adjoint with respect to the Petersson scalar product
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The Weil representation and Hecke operators 251

(see Theorem 4.12). In particular, Sk,A has a basis of simultaneous eigenforms of all T (m2)∗
with (m, N ) = 1.

In Sect. 5 we extend the definition of the Hecke operators T (m2)∗ to all positive integers
m, not necessarily coprime to N . This is done by defining the right-action on C[A] of a matrix

α =
(

m2 0
0 1

)
by the same formula as in the case where m is coprime to N . Notice, that the

corresponding linear map

C[A] −→ C[A], eλ �→ eλ |A α = emλ

is neither surjective nor injective in general. However, it still can be used to obtain an “action”
of the double coset �α�, see Proposition 5.1 and Lemma 5.2. This suffices to define a cor-
responding Hecke operator T (m2)∗ on Mk,A, which is consistent with our earlier definition
when m is coprime to N .

For any positive integer m, the Hecke operator T (m2)∗ is self adjoint with respect to the
Petersson scalar product. Moreover, if m and n are coprime, then

T (m2)∗T (n2)∗ = T (m2n2)∗,

see Theorem 5.6. Observe that for a prime p dividing N the local Hecke algebra, that is, the
subalgebra of End(Mk,A) generated by the T (p2ν)∗, is considerably more complicated than
in the case where p is coprime to N . For instance, it is commutative if p is coprime to N ,
but in general non-commutative if p divides N .

Let S be a finite set of primes and let NS be the product of the primes in S. Let f ∈ Sk,A

be a common eigenform of all T (m2)∗ with (m, NS) = 1, so

f |k,A T (m2)∗ = λm( f ) f.

We can use the above results to define an L-function associated to f by putting

L S(s, f ) =
∑

m≥1
(m,NS)=1

λm( f )m−s .

It is easily seen that L S(s, f ) converges for 
(s) sufficiently large. By Theorem 5.6, this
L-function has an Euler product expansion. According to [1], it should be viewed as the
standard L-function of f . It would be interesting to study the analytic properties of L S(s, f )

in more detail. This could possibly be done by using a variant of the doubling method (see
[1,11,17]) involving a Siegel Eisenstein series of genus 2 associated to the Weil representation
of Sp(2, Z) on C[A2].

Moreover, it would be very interesting to develop a theory of new forms for the space
Mk,A. One could try to associate an irreducible automorphic representation to a vector valued
new form and study the properties of the resulting map.

If the signature of L is odd, one can carry over the above results. However, one has to work
with the metaplectic cover of � and with similar {±1}-extensions of S(N ), G(N ), and Q(N ).
In this case Mk,A vanishes unless k is half-integral. Following the argument of Shimura [20],
we show that the Hecke operator T (M, r) vanishes identically unless det(M) is the square of
a rational number, see Proposition 4.9. The computation of the action of the Hecke operators
on modular forms is more involved than in the even signature (i.e. integral weight) case, see
Theorem 4.10.

We thank E. Freitag for many valuable discussions on this paper. Moreover, we thank
J. Funke for several useful comments.
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252 J. H. Bruinier, O. Stein

2 Discriminant forms and the Weil representation

Here we briefly summarize some facts on lattices, discriminant forms, and the Weil repre-
sentation. See also [2–4].

Let L be a non-degenerate even lattice of type (b+, b−). We denote the bilinear form on L
by (·, ·) and the associated quadratic form by x �→ 1

2 x2 = 1
2 (x, x). We let sig(L) = b+ −b−

be the signature of L . We write L ′ for the dual lattice of L , and denote by N the level of
L , that is, the smallest positive integer such that N

2 x2 ∈ Z for all x ∈ L ′. The finite abelian
group L ′/L is called the discriminant group of L . Its order is equal to the absolute value of
the Gram determinant of L .

Recall that a discriminant form is a finite abelian group A together with a Q/Z-valued
non-degenerate quadratic form x �→ 1

2 x2, for x ∈ A (see [15]). If L is a non-degenerate
even lattice then L ′/L is a discriminant form where the quadratic form is given by the mod 1
reduction of the quadratic form on L ′. Conversely, every discriminant form can be obtained in
this way. The quadratic form on L ′/L determines the signature of L modulo 8 by Milgram’s
formula (see [13, Appendix 4]):

∑

λ∈L ′/L

e(λ2/2) = √|L ′/L|e(sig(L)/8). (2.1)

Here and throughout we abbreviate e(z) = e2π i z for z ∈ C. We define the signature sig(A) ∈
Z/8Z of a discriminant form A to be the signature of any even lattice with that discriminant
form.

If A is a discriminant form, then we write An for the subgroup of elements that are nth
powers of elements of A. Moreover, we write An for the subgroup of elements of A whose
order divides n. We have an exact sequence

0 −→ An −→ A −→ An −→ 0, (2.2)

and An is the orthogonal complement of An .
Let H = {τ ∈ C; �(τ ) > 0} by the complex upper half plane. We write G̃L

+
2 (R) for the

metaplectic twofold cover of GL+
2 (R). The elements of this group are pairs (M, φ(τ )) where

M = (
a b
c d

) ∈ GL+
2 (R) and φ : H → C is a holomorphic function with φ(τ)2 = cτ + d .

The multiplication is defined by

(M, φ(τ ))
(
M ′, φ′(τ )

) = (
M M ′, φ(M ′τ)φ′(τ )

)
.

For g = (M, φ) ∈ G̃L
+
2 (R), we put det(g) = det(M). Moreover, if G is a subset of GL+

2 (R),
we write G̃ for its inverse image under the covering map. Throughout we write � = SL2(Z)

for the full modular group. It is well known that the integral metaplectic group �̃ is generated
by T = ((

1 1
0 1

)
, 1

)
, and S = ((

0 −1
1 0

)
,
√

τ
)
. One has the relations S2 = (ST )3 = Z , where

Z = (( −1 0
0 −1

)
, i

)
is the standard generator of the center of �̃.

We now recall the Weil representation associated with a discriminant form A (see also
[2,3]). It is a representation of �̃ on the group algebra C[A]. We denote the standard basis
elements of C[A] by eλ, λ ∈ A, and write 〈·, ·〉 for the standard scalar product (anti-linear in
the second entry) such that 〈eλ, eµ〉 = δλ,µ. The Weil representation ρA associated with the
discriminant form A is the unitary representation of �̃ on the group algebra C[A] defined by

ρA(T )(eλ) = e(λ2/2)eλ, (2.3)
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The Weil representation and Hecke operators 253

ρA(S)(eλ) = e(− sig(A)/8)√|A|
∑

µ∈A

e(−(λ, µ))eµ. (2.4)

Note that

ρA(Z)(eλ) = e(− sig(A)/4)e−λ. (2.5)

The orthogonal group O(A) also acts on C[A] by

ρA(h)(eλ) = eh−1λ (2.6)

for h ∈ O(A), and the actions of �̃ and O(A) commute.
If the signature of A is even, then (2.5) implies that Z2 acts trivially. Hence, the Weil rep-

resentation factors through �. Moreover, it is trivial on the principal congruence subgroup
�(N ), where N is the level of A, i.e. the level of any even lattice L with L ′/L = A (see, e.g.
[8, Chapter 3, Theorem 3.2]). Therefore, ρA factors through the finite group

S(N ) := SL2(Z/NZ) ∼= �/�(N ). (2.7)

If the signature of A is odd, we notice that the level of A must be divisible by 4. This follows
from the oddity formula ([7], p. 383 (30)) which implies that A contains odd 2-adic Jordan
components. On �(4) the metaplectic cover has the section

s : �(4) −→ �̃(4),

(
a b
c d

)
�→

((
a b
c d

)
,
( c

d

)√
cτ + d

)

given by the theta multiplier system. Here
√· denotes the principal branch of the holomorphic

square root. The same argument as at the end of the proof of Theorem 5.4 in [3] implies that
ρA is trivial on s(�(N )) and factors through the central extension of S(N ) by {±1} given by

S1(N ) := �̃/s(�(N )). (2.8)

We will also need the action of ρA on diagonal matrices in S(N ). Following [12], for
integers a, d coprime to N such that ad ≡ 1 (mod N ), we put

Rd := ST d S−1T a ST d . (2.9)

It is easily checked that Rd = (M, φ) where M ≡ (
a 0
0 d

)
(mod N ).

Lemma 2.1 (See [12, Lemma 4.6]) For a, d as above we have

ρA(Rd)eλ = gd(A)

g(A)
edλ. (2.10)

Here gd(A) denotes the Gauss sum

gd(A) =
∑

λ∈A

e(dλ2/2) (2.11)

and g(A) = g1(A).

Notice that by Milgram’s formula we have g(A) = √|A|e(sig(A)/8). Moreover, one eas-
ily checks that |gd(A)| = √|A|. If r ∈ Z is coprime to N , then we have gdr2(A) = gd(A).
In particular, gd(A) = ga(A). Finally, Lemma 2.1 and the fact that ρA is a representation
imply the relation

gdr (A)g(A)

gd(A)gr (A)
=

{
1, if sig(A) is even,
±1, if sig(A) is odd.

(2.12)
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The following more general formula was given by Borcherds.

Proposition 2.2 (See [3, Theorem 5.4]) Let g = ( (
a b
c d

)
,
√

cτ + d
) ∈ �̃, and suppose that

b and c are divisible by N. Then

ρA(g)eλ = χA(g)edλ. (2.13)

Here χA denotes the character of �̃0(N ) defined in [3, Theorem 5.4].

Lemma 2.3 Let U = ((
1 0
1 1

)
,
√

τ + 1
) ∈ �̃. The action of U m is given by

ρA(U m)eλ = 1

|A|
∑

µ,ν∈A

e
(−mµ2/2 + (µ, λ − ν)

)
eν .

Proof Since U m = ST −m S−1, this follows immediately from (2.3) to (2.4). ��
In many recent works vector valued modular forms associated to the Weil representation

are considered (see, e.g. [2–4,12,18]). Let k ∈ 1
2 Z, and let �′ ⊂ �̃ be a subgroup of finite

index. A holomorphic function f : H → C[A] is called a modular form of weight k and type
ρA for the group �′, if

f (Mτ) = φ(τ)2kρA(M, φ) f (τ )

for all (M, φ) ∈ �′, and f is holomorphic at the cusps of �′. We denote the C-vector space
of such holomorphic modular forms by Mk,A(�′). Moreover, for the full modular group we
put Mk,A = Mk,A(�̃). Formula (2.5) implies that Mk,A = {0} unless

2k ≡ sig(A) mod 2. (2.14)

Recall that for f, g ∈ Mk,A(�′) the Petersson scalar product is defined by

( f, g) = 1
[
�̃ : �′]

∫

�′\H

〈
f (τ ), g(τ )

〉
yk dx dy

y2 . (2.15)

Here x denotes the real part and y the imaginary part of τ ∈ H. The Petersson scalar product
converges when f ⊗ g is a cusp form.

3 Extending the Weil representation

In the classical theory of scalar valued modular forms Hecke operators play an important role
(see, e.g. [19]). It is natural to try to define Hecke operators on vector valued modular forms
of type ρA as well. This requires the extension of the representation ρA to a representation
(of a sufficiently large subgroup) of G̃L

+
2 (Q). However, it is not obvious how this can be

done.
A natural starting point is to try to extend ρA, viewed as a representation of S(N ) (respec-

tively S1(N )), to a representation of (a double cover of) GL2(Z/NZ). However, it was
observed by E. Freitag that such an extension does not exist in general. This follows from
the following example.

Example 3.1 Let d ≡ 1 (mod 4) be an integer such that p := |d| is a prime. We consider
the ring of integers O in the quadratic field Q(

√
d) of discriminant d . Together with the

norm form, it is an even lattice of type (1, 1) if d > 0, and of type (2, 0) if d < 0. The
dual lattice is 1√

d
O, the inverse of the different, and the corresponding discriminant form A
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The Weil representation and Hecke operators 255

can be identified with the finite field Fp together with the quadratic form x �→ − 1
d x2. The

associated Weil representation ρA is a p-dimensional representation of S(p) = SL2(Fp) on
C[A]. The action of the orthogonal group O(A) = {±1} splits C[A] into two S(p)-invariant
subspaces

C[A]+ = span{eλ + e−λ; λ ∈ A},
C[A]− = span{eλ − e−λ; λ ∈ A}.

They have dimension p+1
2 , and p−1

2 , respectively. It follows from [16, Theorem 4], that the
corresponding representations of S(p) are irreducible.

On the other hand, the character table of GL2(Fp) is well known, see, e.g. [10, Section
5.2]. It has p−1 one-dimensional representations, p−1 irreducible p-dimensional represen-
tations, (p − 1)(p − 2)/2 irreducible (p + 1)-dimensional representations, and (p2 − p)/2
irreducible (p − 1)-dimensional representations.

Now assume that p ≥ 5 and that ρA has an extension ρ̃A to a representation of GL2(Fp).
Because of the irreducibility of C[A]±, such an extension would have to be a p-dimensional
irreducible representation of GL2(Fp). But these representations remain irreducible under
restriction to SL2(Fp), see [10, p. 72 (2)]. We obtain a contradiction.

Remark 3.2 In [12], McGraw continues ρA to an action of GL2(Z/NZ). However, this action
is not C-linear, causing serious difficulties when one tries to define Hecke operators.

Here we consider a different group extension Q(N ) of S(N ) and show that ρA can be con-
tinued to a representation of Q(N ). Together with the considerations of Sect. 5 this will suffice
for many applications of Hecke operators; for instance, to define the standard L-function of
a modular form of type ρA.

Let A be a discriminant form as in the previous section, and let N be the level of A. We
denote by U (N ) the unit group of Z/NZ. We briefly write G(N ) = GL2(Z/NZ) for the
general linear group modulo N . The determinant homomorphism G(N ) → U (N ) gives rise
to the exact sequence

1 −→ S(N ) −→ G(N ) −→ U (N ) −→ 1. (3.1)

This sequence splits and G(N ) can be viewed as a semidirect product of S(N ) and U (N ).

3.1 The case of even signature

Throughout this subsection we assume that sig(A) is even. Let Q(N ) be the group

Q(N ) = {(M, r) ∈ G(N ) × U (N ); det(M) ≡ r2 (mod N )} (3.2)

with the product defined component-wise. We have an exact sequence

1 −→ S(N ) −→ Q(N ) −→ U (N ) −→ 1, (3.3)

where S(N )→ Q(N ) is given by M �→ (M, 1), and Q(N )→U (N ) is given by (M, r) �→ r .
The latter homomorphism has the section

U (N ) −→ Q(N ), r �→
((

r 0
0 r

)
, r

)
. (3.4)

For (M, r) ∈ Q(N ) the assignment (M, r) �→ (M
(

r 0
0 r

)−1
, r) defines an isomorphism

Q(N ) ∼= S(N ) × U (N ).
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256 J. H. Bruinier, O. Stein

We consider the action of S(N ) on C[A] by the Weil representation ρA. In view of (2.12),
the assignment r �→ g(A)

gr (A)
defines a character of U (N ). We define a unitary representation

of U (N ) on C[A] by putting

ρA(r)eλ = ρA

((
r 0
0 r

)
, r

)
eλ = g(A)

gr (A)
eλ (3.5)

for r ∈ U (N ).

Proposition 3.3 The Weil representation ρA of the group S(N ) extends to a unitary repre-
sentation of Q(N ) by (3.5).

Proof Since Q(N ) = S(N ) × U (N ) we only have to check that the actions of S(N ) and
U (N ) commute. This is obvious. ��

Remark 3.4 Clearly we could take any character of U (N ) to define the action of the Weil
representation on U (N ). The above choice is compatible with the definition of the Weil
representation on double cosets in Sect. 5. Moreover, it is compatible with the usual Hecke
operators on scalar valued modular forms, see Remarks 4.4 and 4.11.

The following proposition shows that the first entry of an element (M, r) ∈ Q(N ) gives
the “essential contribution” to the Weil representation. If we fix M then for the different
choices of r ∈ U (N ) the Weil representation ρA(M, r) differs by the action of an element
of the orthogonal group O(A).

Proposition 3.5 Let (M, r1), (M, r2) ∈ Q(N ). Then h : A → A, λ �→ r1r−1
2 λ is an

orthogonal transformation in O(A), and

ρA(M, r1)eλ = ρA(M, r2)ρA(h)eλ = ρA(M, r2)eh−1λ.

Proof We have (M, r2)
−1(M, r1) = (1, r1r−1

2 ), and t = r1r−1
2 ∈ U (N ) has the property

that t2 ≡ 1 (mod N ). According to (2.10) and (3.5), the action of (1, t) is given by

ρA(1, t)eλ = et−1λ.

Since (tλ, tµ) = (t2λ,µ) = (λ, µ) for all λ,µ ∈ A, multiplication by t−1 is an orthog-
onal transformation. ��

Lemma 3.6 We have

ρA

((
r2 0
0 1

)
, r

)
eλ = er−1λ, (3.6)

ρA

((
1 0
0 r2

)
, r

)
eλ = erλ. (3.7)

Proof In Q(N ) we have
((

r2 0
0 1

)
, r

)
= (

Rr−1 , 1
) ((

r 0
0 r

)
, r

)
.

Therefore the fist formula follows from Lemma 2.1 and (3.5). The second formula follows
similarly. ��
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3.2 The case of odd signature

Throughout this subsection we assume that sig(A) is odd. In this case the argument of the pre-
vious section only shows that the Weil representation extends to a projective representation
of Q(N ). More precisely, it extends to a group homomorphism

Q(N ) −→ U(C[A])/{±1}.
This projective representation gives rise to a 2-cocycle of Q(N ) with values in {±1}. The
cocycle defines a central extension Q1(N ) of Q(N ) by {±1}. The group S1(N ), see (2.8),
can be identified with a subgroup of Q1(N ) (see Sect. 4.2 for more details).

Proposition 3.7 The assignment (3.5) defines an extension of the Weil representation to a
projective representation of Q(N ). It lifts to a unitary representation of Q1(N ).

4 Hecke operators on vector valued modular forms

We now use the results of Sect. 3 to define Hecke operators on vector valued modular forms
of type ρA. We consider the groups

G(N ) = {M ∈ GL+
2 (Q); ∃n ∈ Z with (n, N ) = 1 such that nM ∈ M2(Z)

and (det(nM), N ) = 1}, (4.1)

Q(N ) = {(M, r) ∈ G(N ) × U (N ); det(M) ≡ r2 (mod N )}. (4.2)

We view � as a subgroup of Q(N ) by the embedding M �→ (M, 1). We are interested in the
action of the Hecke algebra of the pair (Q(N ), �) on modular forms of type ρA and weight k.
We have to distinguish the cases whether sig(A) is even or odd.

4.1 The case of even signature

The composition of the reduction map Q(N ) → Q(N ) with the Weil representation ρA :
Q(N ) → U(C[A]) induces a unitary representation of Q(N ) on C[A], which we will denote
by ρA as well. This left action induces a corresponding right action by

a |A (M, r) = ρA(M, r)−1a. (4.3)

In view of (2.14) we only have to consider modular forms of integral weight k ∈ Z. Let f
be a complex valued function on H. For M ∈ GL+

2 (R) the Petersson slash operator is defined
by

( f |k M)(τ ) = det(M)k/2 j (M, τ )−k f (Mτ). (4.4)

This defines a right action of G(N ) on functions H → C. The center acts by multiplication
with ±1.

If f : H → C[A] is a function we write f = ∑
λ∈A fλ ⊗ eλ for its decomposition in

components with respect to the standard basis of C[A]. The tensor product of the above two
actions yields a right action of Q(N ) on such functions, denoted by

f |k,A (M, r) =
∑

λ∈A

( fλ |k M) ⊗ (eλ |A (M, r)) . (4.5)
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258 J. H. Bruinier, O. Stein

Notice that a holomorphic function f : H → C[A] belongs to Mk,A, if and only if

f |k,A M = f

for all M ∈ �, and f is holomorphic at the cusp ∞.
We consider the Hecke algebra of the pair (Q(N ), �) in the sense of Shimura [19]. If

(M, r) ∈ Q(N ), the corresponding double coset decomposes into a finite union of left cosets

� · (M, r) · � =
⋃

γ∈�\�M�

� · (γ, r).

Definition 4.1 For (M, r) ∈ Q(N ) we define the corresponding Hecke operator T (M, r) on
Mk,A by

f |k,A T (M, r) = det(M)k/2−1
∑

γ∈�\�M�

f |k,A (γ, r), f ∈ Mk,A. (4.6)

The usual argument now shows that f |k,A T (M, r) ∈ Mk,A. Hence T (M, r) defines an
endomorphism of Mk,A. A modular form f ∈ Mk,A has a Fourier expansion of the form

f (τ ) =
∑

λ∈A

∑

n∈Z+λ2/2

c(λ, n)e(nτ) ⊗ eλ. (4.7)

Theorem 4.2 Let p be a prime which is a square modulo N, and assume that r ∈ U (N )

with p ≡ r2 (mod N ). Let f ∈ Mk,A and denote the Fourier expansion as in (4.7). Then

f |k,A T
(( p 0

0 1

)
, r

) =
∑

λ∈A

∑

n∈Z+λ2/2

b(λ, n)e(nτ) ⊗ eλ,

where

b(λ, n) = c(rλ, pn) + pk−1c(λ/r, n/p).

Here we understand that c(λ/r, n/p) = 0 if p � n, i.e. if ordp(n) = 0.

Proof Using Lemma 3.6, the formula follows in the same way as in the scalar valued case. ��
Proposition 4.3 Let p be a prime coprime to N. Let f ∈ Mk,A and denote the Fourier
expansion as in (4.7). Then

f |k,A T
((

p2 0
0 1

)
, p

)
=

∑

λ∈A

∑

n∈Z+λ2/2

b(λ, n)e(nτ) ⊗ eλ,

where

b(λ, n) = c
(

pλ, p2n
) + g(A)

gp(A)
pk−2(δp(n) − 1)c(λ, n) + p2k−2c

(
λ/p, n/p2),

and

δp(n) =
{

p, if p | n,

0, if p � n.

Moreover, we understand that c(λ/p, n/p2) = 0 if p2 � n.

Proof We omit the proof, which is similar (but easier) to the proof of Theorem 4.10. ��

123



The Weil representation and Hecke operators 259

Remark 4.4 If |A| = � is a prime, then Mk,A can be identified with the plus or minus sub-
space of the space Mk(�, χ�) of scalar valued modular forms for �0(�) with nebentypus,
see [5]. Under this identification, the above Hecke operators correspond to the usual Hecke
operators on Mk(�, χ�). This follows by comparing the actions on Fourier expansions. For
Hecke operators on Mk(�, χ�) see, e.g. [14, Lemma 4.5.14].

4.2 The case of odd signature

We now assume that sig(A) is odd. In view of (2.14) we only have to consider modular forms
of half integral weight k ∈ Z + 1/2. In this case, the problem arises that both, (4.3) and
(4.4), only define projective actions of Q(N ). To obtain honest actions, one has to consider
appropriate central extensions.

We begin by considering the action on C[A]. The composition of the natural reduction
Q(N ) → Q(N ) with the projective Weil representation ρA : Q(N ) → U(C[A])/{±1}
induces a projective representation

ρA : Q(N ) −→ U(C[A])/{±1}, g �→ ρA(g).

If we choose for every g ∈ Q(N ) a ρ̃A(g) ∈ U(C[A]) such that ρ̃A(g) �→ ρA(g) under the
projection to U(C[A])/{±1}, we obtain a 2-cocycle c with values in {±1} defined by

ρ̃A(g1g2) = c(g1, g2)ρ̃A(g1)ρ̃A(g2)

for g1, g2 ∈ Q(N ). This cocycle gives rise to a central extension

Q1(N ) = Q(N ) × {±1}, (4.8)

where the multiplication is defined by

(g1, t1)(g2, t2) = (
g1g2, t1t2c(g1, g2)

−1).

Here the cocycle condition

c(g1g2, g3)c(g1, g2) = c(g1, g2g3)c(g2, g3)

is equivalent to the associativity law for the above multiplication. We obtain a unitary repre-
sentation

Q1(N ) −→ U(C[A]) (4.9)

by putting ρA(g, t) = t ρ̃A(g). This left action induces a corresponding right action

a |A (g, t) = ρA(g, t)−1a, (4.10)

for (g, t) ∈ Q1(N ) and a ∈ C[A].
Without loss of generality, for (M, 1) ∈ � × {1} ⊂ Q(N ) we choose

ρ̃A(M, 1) = ρA
(
M,

√
j (M, τ )

)
. (4.11)

Then we have an injective homomorphism

�̃ −→ Q1(N ),
(
M,±√

j (M, τ )
) �→ (M, 1,±1). (4.12)

Moreover, for a positive integer m coprime to N , we put

ρ̃A

((
m2 0
0 1

)
, m

)
eλ = em−1λ. (4.13)
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To define an action on functions we consider the metaplectic group G̃L
+
2 (R). It acts on

functions f : H → C by

( f |k (M, φ))(τ ) = det(M)k/2φ(τ)−2k f (Mτ) (4.14)

for (M, φ) ∈ G̃L
+
2 (R). In particular, we have an action of H̃(N ) ⊂ G̃L

+
2 (R), where

H(N ) = {M ∈ G(N ); det(M) is a square mod N } ⊂ GL+
2 (R) (4.15)

is the image of the projection of Q(N ) to the first component. Notice that the cocycle of
Q(N ) given by the choice of ±√

j (M, τ ) for (M, r) ∈ Q(N ) and the cocycle c are not
isomorphic (this follows for instance from Lemma 4.8 below). However, their restrictions to
�̃ are isomorphic.

To define an action on C[A]-valued functions in weight k we have to consider a com-
bination of the above extensions. We let Q2(N ) be the group of tuples (M, φ, r, t), where
g = (M, φ) ∈ H̃(N ), and r ∈ U (N ) with det(M) ≡ r2 (mod N ), and t ∈ {±1}. The
composition law is defined by

(g1, r1, t1)(g2, r2, t2) = (
g1g2, r1r2, t1t2c((M1, r1), (M2, r2))

−1) (4.16)

for (gi , ri , ti ) ∈ Q2(N ) and gi = (Mi , φi ). We denote by P : Q2 → H̃(N ) the natural
projection. It has the kernel

{(1, 1, r, t) ∈ Q2; r2 ≡ 1 (N )}.
Over �̃ the projection P has the section

L : �̃ −→ Q2,
(
M,±√

j (M, τ )
) �→ (

M,±√
j (M, τ ), 1,±1

)
. (4.17)

We write


 = L(�̃). (4.18)

We define the Weil representation ρA on Q2(N ) by composing the natural map to Q1(N )

with the Weil representation on that group. For γ ∈ �̃ we have

ρA(γ ) = ρA(L(γ )). (4.19)

The tensor product of the above two actions yields a right action of Q2(N ) on functions
f : H → C[A]. If we write f = ∑

λ∈A fλ ⊗ eλ for the decomposition in components with
respect to the standard basis of C[A], the action is given by

f |k,A (M, φ, r, t) =
∑

λ∈A

( fλ |k (M, φ)) ⊗ (eλ |A (M, r, t)) (4.20)

for (M, φ, r, t) ∈ Q2(N ). A holomorphic function f : H → C[A] belongs to Mk,A, if and
only if f |k,A (M, φ) = f for all (M, φ) ∈ �̃, and f is holomorphic at the cusp ∞.

We may now define Hecke operators on modular forms of type ρA following Shimura
[20]. For α = (M, φ) ∈ H̃(N ) and ξ = (α, r, t) ∈ Q2(N ) we consider the double coset

ξ
. If


ξ
 =
⋃

i


ξi

is a left coset decomposition, we define the Hecke operator T (ξ) by

f |k,A T (ξ) = det(α)k/2−1
∑

i

f |k,A ξi (4.21)
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for f ∈ Mk,A. It is easily seen that T (ξ) is independent of the choice of the coset represen-
tatives and defines an endomorphism of Mk,A. We recall the following standard lemma.

Lemma 4.5 Let the notation be as above. Then


 =
⋃

i∈I

(
 ∩ ξ−1
ξ) · γi

(γi ∈ 
) is a disjoint left coset decomposition if and only if


ξ
 =
⋃

i∈I


 · ξγi

is a disjoint left coset decomposition.

To compute the action of Hecke operators we have to compare the groups 
 ∩ ξ−1
ξ

and L(�̃ ∩ α−1�̃α). Let α ∈ H̃(N ) and ξ ∈ Q2(N ) with P(ξ) = α. For γ ∈ �̃ ∩ α−1�̃α

we have

L(αγ α−1) = ξ L(γ )ξ−1 · (1, 1, t (γ )) (4.22)

with t (γ ) ∈ {±1}. Here t (γ ) is independent of the choice of ξ and is determined by the
condition

ρA(αγ α−1) = t (γ )ρA(ξ)ρA(γ )ρA(ξ)−1. (4.23)

Hence t defines a group homomorphism

t : �̃ ∩ α−1�̃α −→ {±1}. (4.24)

Lemma 4.6 Let the notation be as above. We have L(ker(t)) = 
 ∩ ξ−1
ξ . Moreover, if t
is non-trivial, then f |k,A T (ξ) = 0 for all f ∈ Mk,A.

Proof The proof is analogous to Proposition 1.0 in [20]. ��
Lemma 4.7 Let the notation be as above. The homomorphism t is trivial if and only if P
gives a bijective map of 
ξ
 onto �̃α�̃. Moreover, when this is the case then 
ξ
 = ⋃

i 
ξi

(where ξi ∈ 
ξ
) is a disjoint union if and only if �̃α�̃ = ⋃
i �̃P(ξi ) is a disjoint union.

Proof The proof is analogous to Proposition 1.1 in [20]. ��
Lemma 4.8 Let m, n be positive integers coprime to N, α = ((

m 0
0 n

)
,
√

n
) ∈ H̃(N ), and

ξ = (α, r, t) ∈ Q2(N ). Define t : �̃ ∩ α−1�̃α −→ {±1} as in (4.24). Then

t

((
a b
c d

)
,
√

cτ + d

)
=

(mn

d

)
.

Here the quadratic residue symbol is defined as in [20].

Proof Define �′ = �0(m) ∩ �0(n) ⊂ �. We first notice that

�̃′ = �̃ ∩ α−1�̃α.

Since t is a homomorphism it suffices to prove the assertion for a set of generators of �̃′. It
is easily verified that �̃′ is generated by T n , U m , and �̃′ ∩ �̃0

0(N ).
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For γ = T n ∈ �̃′ we have αγα−1 = T m . We compute t (γ ) using (4.23). There is a
constant Cξ of modulus 1 such that ρA(ξ)eλ = Cξ enr−1λ. Hence

ρA(ξ)ρA(T n)ρA(ξ)−1eλ = C−1
ξ ρA(ξ)ρA(T n)en−1rλ

= C−1
ξ e

(
n−1r2λ2/2

)
ρA(ξ)en−1rλ

= e
(
n−1r2λ2/2

)
eλ

= e
(
mλ2/2

)
eλ.

Here n−1 in the exponentials means the inverse of n in U (N ). On the other hand, we have
ρA(T m)eλ = e(mλ2/2)eλ. Hence t (T n) = 1 in accordance with the formula.

For γ = U m ∈ �̃′ we have αγα−1 = U n . We find

ρA(ξ)ρA(U m)ρA(ξ)−1eλ = C−1
ξ ρA(ξ)ρA(U m)en−1rλ

= C−1
ξ

|A| ρA(ξ)
∑

µ,ν∈A

e
(−mµ2/2 + (µ, n−1rλ − ν)

)
eν

= 1

|A|
∑

µ,ν∈A

e
(−mµ2/2 + (n−1rµ, λ − ν)

)
eν

= 1

|A|
∑

µ,ν∈A

e
(−nµ2/2 + (µ, λ − ν)

)
eν .

This is equal to ρA(U n). Hence t (U m) = 1 in accordance with the formula.
To compute t (γ ) for γ ∈ �̃′ ∩ �̃0

0(N ), we use the formula for the Weil representation of
Proposition 2.2. Using the definition one easily checks that if γ ∈ �̃′ ∩ �̃0

0(N ), we have

χA(γ ) = χA
(
αγα−1)

(mn

d

)
.

Therefore

ρA(ξ)ρA(γ )ρA(ξ)−1eλ = C−1
ξ ρA(ξ)ρA(γ )en−1rλ

= χA(γ )edλ

=
(mn

d

)
ρA

(
αγα−1)eλ.

So t (γ ) = (mn
d

)
as claimed. ��

Proposition 4.9 Let α = (M, φ) ∈ H̃(N ) and ξ = (α, r, t) ∈ Q2(N ). Then the Hecke
operator T (ξ) on Mk,A vanishes identically unless det(M) is a square in Q.

Proof By multiplying with a positive integer we may assume without loss of generality that
M has entries in Z. According to the elementary divisor theorem for � we may further assume
that M = (

m 0
0 n

)
with positive integers m, n. So we may assume that

α =
((

m 0
0 n

)
,
√

n

)
.

Hence the assertion follows from Lemmas 4.6 and 4.8. ��
We now study the relation between Hecke operators and Fourier coefficients. The follow-

ing theorem is the analogue of Proposition 4.3 in the odd signature case. It can be viewed as
a generalization of Theorem 1.7 in [20].
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Theorem 4.10 Let p be a prime coprime to N, and put

α =
((

p2 0
0 1

)
, 1

)
∈ H̃(N ),

ξ = (α, p, 1) ∈ Q2(N ).

Let f ∈ Mk,A and write

f (τ ) =
∑

λ∈A

∑

n∈Z+λ2/2

c(λ, n)e(nτ) ⊗ eλ,

f |k,AT (ξ) =
∑

λ∈A

∑

n∈Z+λ2/2

b(λ, n)e(nτ) ⊗ eλ.

Then

b(λ, n) = c(pλ, p2n) + ε
sig(A)+

( −1
|A|

)

p

(
p

|A|2sig(A)

)
pk−3/2

(−n

p

)
c(λ, n)

+p2k−2c(λ/p, n/p2).

Here, for an odd integer d we put

εd =
{

1, if d ≡ 1 (mod 4),

i, if d ≡ −1 (mod 4).

Moreover, we understand that c(λ/p, n/p2) = 0 if p2 � n.

Proof To compute f |k,AT (ξ), we need a set of representatives for 
\
ξ
. In view of
Lemmas 4.7 and 4.8, the map

Lξ : �̃α�̃ −→ 
ξ
, δ = γαγ ′ �→ Lξ (δ) := L(γ )ξ L(γ ′)

is a bijection (where γ, γ ′ ∈ �̃). Here we have Lξ (δ) = (δ, p, t), and t = t (δ) is uniquely
determined by the condition

ρA(δ, p, t) = ρA(γ )ρA(ξ)ρA(γ ′). (4.25)

We have the disjoint left coset decomposition

�̃α�̃ = �̃α ∪
⋃

h (p)∗
�̃βh ∪

⋃

b (p2)

�̃γb,

where

βh =
((

p hN
0 p

)
,
√

p

)
=

((
r Nh

Ns p

)
,
√

Nsτ + p

)
α

((
1 0

−N ps 1

)
,
√−N psτ + 1

)
,

γb =
((

1 b
0 p2

)
, p

)
=

((
d Nt

−N p2

)
,

√
−Nτ + p2

)
α

((
1 −Nt
N p2d

)
,

√
Nτ + p2d

)
T b,

and r, s ∈ Z are chosen such that pr − N 2hs = 1, and d, t ∈ Z are chosen such that
p2d + N 2t = 1. Consequently, we obtain the disjoint left coset decomposition


ξ
 = 
ξ ∪
⋃

h (p)∗

Lξ (βh) ∪

⋃

b (p2)


Lξ (γb). (4.26)
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The action of Lξ (βh) and Lξ (γb) in the Weil representation can be computed by means of
(4.25) and the above decompositions. Using Proposition 2.2 and the fact that ρA(ξ)eλ = ep−1λ

by (4.13), we find that

ρA(Lξ (γb))eλ = χA

((
d Nt

−N p2

)
,

√
−Nτ + p2

)

×χA

((
1 −Nt
N p2d

)
,

√
Nτ + p2d

)
e(bλ2/2)epλ.

Since d is a square modulo N 2, it is a square modulo the square-free part of |A| and modulo
8. Therefore, a quick calculation shows that the character values are 1. Consequently,

ρA(Lξ (γb))eλ = e
(
bλ2/2

)
epλ. (4.27)

In the same way we obtain

ρA(Lξ (βh))eλ = ρA

((
r Nh

Ns p

)
,
√

Nsτ + p

)
ρA(ξ)eλ

= ρA

((
r Nh

Ns p

)
,
√

Nsτ + p

)
ep−1λ

= χA

((
r Nh

Ns p

)
,
√

Nsτ + p

)
eλ

= ε
1−

( −1
|A|

)
−sig(A)

p

(
Ns

p

)(
p

|A|2sig(A)

)
eλ

Here in the last line we have used the explicit formula for χA. Since −N 2hs ≡ 1 (mod p),
we find

ρA(Lξ (βh))eλ = ε
1−

( −1
|A|

)
−sig(A)

p

(−Nh
p

) (
p

|A|2sig(A)

)
eλ. (4.28)

Now we can compute the Fourier expansion of f |k,AT (ξ). We have

f |k,AT (ξ) = pk−2 f |k,Aξ + pk−2
∑

h (p)∗
f |k,A Lξ (βh) + pk−2

∑

b (p2)

f |k,A Lξ (γb). (4.29)

For the first summand we find

pk−2 f |k,Aξ = pk−2
∑

λ∈A

( fλ |k α) ⊗ (eλ |A ξ)

= p2k−2
∑

λ∈A

fλ(p2τ) ⊗ epλ.

For the second summand in (4.29) we get

pk−2
∑

h (p)∗
f |k,A Lξ (βh) = pk−2

∑

h (p)∗

∑

λ∈A

( fλ |k βh) ⊗ (
eλ |A Lξ (βh)

)

= ε
sig(A)+

( −1
|A|

)
−1

p

(
p

|A|2sig(A)

)
pk−2

∑

λ∈A

∑

h (p)∗

(−Nh

p

)
fλ(τ + Nh/p) ⊗ eλ.

123



The Weil representation and Hecke operators 265

By means of the formula for the Gauss sum
∑

h(p)∗
(

h
p

)
e(kh/p) =

(
k
p

)
εp

√
p we obtain

∑

h (p)∗

(−Nh

p

)
fλ(τ + Nh/p) = √

pεp

∑

n∈Z+λ2/2

(−n

p

)
c(λ, n)e(nτ),

and therefore

pk−2
∑

h (p)∗
f |k,A Lξ (βh)

= ε
sig(A)+

( −1
|A|

)

p

(
p

|A|2sig(A)

)
pk−3/2

∑

λ∈A

∑

n∈Z+λ2/2

(−n

p

)
c(λ, n)e(nτ) ⊗ eλ.

Finally, for the third summand in (4.29) we get

pk−2
∑

b (p2)

f |k,A Lξ (γb) = pk−2
∑

λ∈A

∑

b (p2)

( fλ |k γb) ⊗ (
eλ |A Lξ (γb)

)

= p−2
∑

λ∈A

∑

b (p2)

e
( − b(p−1λ)2/2

)
fλ

(
τ/p2 + b/p2) ⊗ ep−1λ

=
∑

λ∈A

∑

n∈Z+λ2/2

c
(

pλ, p2n
)
e(nτ) ⊗ eλ.

This concludes the proof of the theorem. ��
Remark 4.11 Let m be a positive integer. Let L be the lattice Z with the quadratic form
x �→ −mx2. Then L ′ = 1

2m Z, and Mk,L ′/L is isomorphic to the space Jk+1/2,m of Jacobi
forms of weight k + 1/2 and index m (cf. [9, Theorem 5.1]). Under this isomorphism the
Hecke operator T (ξ) of Theorem 4.10 corresponds to the Hecke operator Tp on Jk+1/2,m

defined in [9, Section 4 (3)]. This follows from Theorem 4.10 and [9, Theorem 4.5], by
comparing the actions on Fourier expansions. Notice that we have in this particular case

ε
sig(A)+

( −1
|A|

)

p

(
p

|A|2sig(A)

)
=

(
m

p

)
.

For the lattice L = Z with the quadratic form x �→ mx2 the space Mk,L ′/L is isomorphic
to the space J skew

k+1/2,m of skew holomorphic Jacobi forms of weight k + 1/2 and index m
defined in [21]. Again, the Hecke operators of Theorem 4.10 correspond to the usual Hecke
operators on skew-holomorphic Jacobi forms.

4.3 A Hecke algebra on vector valued modular forms

Using the double coset actions of the previous section, we may define for every positive
integer m coprime to N a Hecke operator T (m2)∗ : Mk,A → Mk,A, by

f �→ f |k,A T (m2)∗ =
⎧
⎨

⎩

f |k,A T
((

m2 0
0 1

)
, m

)
, if sig(A) is even,

f |k,A T
((

m2 0
0 1

)
, 1, m, 1

)
, if sig(A) is odd.

(4.30)

In the case of even signature (that is integral weight), the operator T (m2)∗ differs from the
usual Hecke operator T (m2) which is given by the sum of double cosets consisting of all
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integral matrices of determinant m2. This is the reason for our notation. In the case of odd sig-
nature (that is half-integral weight), the operator T (m2)∗ is analogous to the Hecke operator
in [20] on scalar valued modular forms.

Theorem 4.12 The Hecke operators T (m2)∗ (for m coprime to N ) generate a commutative
subalgebra of End(Mk,A), which is actually already generated by the T (p2)∗ for p prime
and coprime to N. The operators T (m2)∗ take cusp forms to cusp forms and are self-adjoint
with respect to the Petersson scalar product.

Proof Using the actions (4.5) and (4.20), this follows in the usual way from the properties
of the abstract Hecke algebra of the pair (Q(N ), �), respectively (Q2(N ),
). ��

5 The Weil representation on double cosets

We now want to define Hecke operators T (m2)∗ as in Sect. 4.3 for all positive integers m,

not necessarily coprime to N . If m and N are not coprime, then the reduction of
(

m2 0
0 1

)
does

not belong to GL2(Z/NZ). So we cannot use the results of the previous sections. However,
it is still possible to extend the Weil representation ρA to the corresponding double coset in
a compatible way, as we will see.

Let m be a positive integer and α =
((

m2 0
0 1

)
, 1

)
∈ G̃L

+
2 (R). We define a right action on

C[A] by

eλ |A α = emλ. (5.1)

To lighten the notation, we will frequenty drop the subscript from the slash operator. Com-
paring with (3.6) and (4.13), we see that (5.1) is compatible with our earlier definition in the
case that (m, N ) = 1. Moreover, if δ = γαγ ′ ∈ �̃α�̃, we put

eλ | δ = eλ | γ | α | γ ′. (5.2)

We now show that this right action is well defined, that is, independent of the decomposition
of δ.

Proposition 5.1 Let δ = γαγ ′ = γ1αγ ′
1 ∈ �̃α�̃ (where γ, γ ′, γ1, γ

′
1 ∈ �̃). Then

eλ | γ | α | γ ′ = eλ | γ1 | α | γ ′
1.

Proof First, one easily shows that it suffices to prove the proposition in the case that γ ′ =
γ1 = 1. So we have δ = γα = αγ ′

1 and need to show that

eλ | γ | α = eλ | α | γ ′
1. (5.3)

If we write γ = ((
a b
c d

)
,±√

cτ + d
)
, then γ ′

1 =
((

a b/m2

m2c d

)
,±√

m2cτ + d
)

. In particu-

lar, γ ∈ �̃0(m2) and γ ′
1 ∈ �̃0(m2). It suffices to prove (5.3) for γ in a set of generators of

�̃0(m2).
It is easily seen that �̃0(m2) is generated by �̃0(m2) ∩ �̃0

0(N ), T m2
, and U . For γ ∈

�̃0(m2) ∩ �̃0
0(N ) the identity (5.3) immediately follows from Proposition 2.2. For γ = T m2

it is easily verified as well.
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We now consider (5.3) for γ = U . Using Lemma 2.3, we see that the left hand side of
(5.3) is equal to

eλ | U | α = 1

|A|
∑

µ,ν∈A

e
(
µ2/2 + (µ, λ − ν)

)
emν .

Using (2.2), in the sum over ν we write ν = ν′/m + ν′′ where ν′ ∈ Am and ν′′ ∈ Am . We
obtain

eλ | U | α = 1

|A|
∑

µ∈A

∑

ν′∈Am

ν′′∈Am

e
(
µ2/2 + (

µ, λ − ν′/m − ν′′)) eν′ .

The sum over ν′′ is equal to |Am | if µ ∈ Am and 0 otherwise. Hence

eλ | U | α = |Am |
|A|

∑

µ∈Am

∑

ν∈Am

e
(
µ2/2 + (µ, λ − ν/m)

)
eν

= 1

|A|
∑

µ∈A

∑

ν∈Am

e
(
(mµ)2/2 + (mµ, λ − ν/m)

)
eν .

On the other hand, the right hand side of (5.3) is equal to

eλ | α | U m2 = 1

|A|
∑

µ,ν∈A

e
(
m2µ2/2 + (µ, mλ − ν)

)
eν

= 1

|A||Am |
∑

µ,ν∈A

∑

µ′∈Am

e
(
m2µ2/2 + (

µ + µ′, mλ − ν
))

eν .

The sum over µ′ is equal to |Am | if ν ∈ Am and 0 otherwise. Hence

eλ | α | U m2 = 1

|A|
∑

µ∈A

∑

ν∈Am

e
(
m2µ2/2 + (µ, mλ − ν)

)
eν

= 1

|A|
∑

µ∈A

∑

ν∈Am

e
(
(mµ)2/2 + (mµ, λ − ν/m)

)
eν .

This concludes the proof of the proposition. ��
Lemma 5.2 Let δ ∈ �̃α�̃, and let γ, γ ′ ∈ �̃. Then

eλ | (γ δγ ′) = eλ | γ | δ | γ ′.

Proof This follows immediately from the definition and Proposition 5.1. ��
The element β =

((
1 0
0 m2

)
, m

)
∈ G̃L

+
2 (R) belongs to the double coset �̃α�̃. The fol-

lowing Proposition gives its action on C[A].
Proposition 5.3 We have

eλ | β =
∑

µ∈A
mµ=λ

eµ. (5.4)

Moreover, for the standard scalar product on C[A] we have

〈a | α, b〉 = 〈a, b | β〉, a, b ∈ C[A]. (5.5)
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Proof The first assertion follows from the fact that β = SαS−1 and Lemma 5.2. The second
assertion is verified by a straightforward computation. ��

Proposition 5.4 Let m, n be coprime positive integers, and put α =
((

m2 0
0 1

)
, 1

)
and β =

((
n2 0
0 1

)
, 1

)
. Then for g ∈ �̃α�̃ and h ∈ �̃β�̃ we have

eλ | g | h = eλ | (gh). (5.6)

Proof We write g = γαγ ′ and h = δβδ′ with γ, γ ′, δ, δ′ ∈ �̃. Since (m, n) = 1, a simple
argument using the elementary divisor theorem shows that gh = εαβε′ for suitable ε, ε′ ∈ �̃.

In view of Lemma 5.2 it suffices to prove the assertion in the case that γ = δ′ = 1.
As a second reduction step, we now show that we may in addition assume that ε′ = 1. In

fact, the identity gh = αγ ′δβ = εαβε′ implies that

δβε′−1 = γ ′−1α−1εαβ.

The matrix component of the left hand side has integral entries, hence the same is true for
the right had side. Using the coprimality of m and n we may infer that

δ̃ := γ ′−1α−1εα

belongs to �̃. We obtain

δβ = δ̃βε′,
(αγ ′)(δ̃β) = εαβ.

From the assertion in the ε′ = 1 case we get

eλ | (αγ ′) | (δ̃β) = eλ | (εαβ),

which implies the assertion for arbitrary ε′.
Finally we need to prove the claim in the case that γ = δ′ = ε′ = 1. So g = αγ ′, h = δβ

and

gh = αγ ′δβ = εαβ.

Since αγ ′δ = εα, Lemma 5.2 implies that

eλ | (αγ ′δ) = eλ | (εα),

eλ | (αγ ′δ) | β = eλ | (εα) | β.

Now the claim follows from Lemma 5.2 and the fact that eλ | α | β = eλ | (αβ). ��

Definition 5.5 Let m be a positive integer and α =
((

m2 0
0 1

)
, 1

)
∈ G̃L

+
2 (R). Let

�̃ · α · �̃ =
⋃

i

�̃ · δi

be a disjoint left coset decomposition. We define the Hecke operator T (m2)∗ on modular
forms f ∈ Mk,A by

f �→ f |k,A T (m2)∗ = mk−2
∑

i

f |k,A δi = mk−2
∑

i

∑

λ∈A

( fλ |k δi ) ⊗ (eλ |A δi ) .
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Lemma 5.2 implies that the definition does not depend on the choice of the coset
representatives. Notice that for m coprime to N , this definition agrees with the earlier
definition in Sect. 4.3.

Theorem 5.6 For any positive integer m, the Hecke operator T (m2)∗ is a linear operator on
Mk,A taking cusp forms to cusp forms. It is self adjoint with respect to the Petersson scalar
product. Moreover, if m, n are coprime, then

T (m2)∗T (n2)∗ = T (m2n2)∗.

Proof The first assertion is a consequence of Lemma 5.2. The self adjointness follows from
Proposition 5.3 along the standard argument for scalar valued modular forms (cf. [6, Theorem
1.4.3]). The last assertion is a consequence of Proposition 5.4 and the corresponding property
of the abstract Hecke algebra. ��
Remark 5.7 For a prime p dividing N the local Hecke algebra, that is, the subalgebra of
End(Mk,A) generated by the T (p2ν)∗, is considerably more complicated than in the case
where p is coprime to N . For instance, it is commutative if p is coprime to N , but in general
non-commutative if p divides N .

References

1. Böcherer, S.: Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe.
J. Reine Angew. Math. 362, 146–168 (1985)

2. Borcherds, R.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491–562
(1998)

3. Borcherds, R.: Reflection groups of Lorentian lattices. Duke Math. J. 104, 319–366 (2000)
4. Bruinier, J.H.: Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors. Springer Lecture

Notes in Mathematics, vol. 1780. Springer, New York (2002)
5. Bruinier, J.H., Bundschuh, M.: On Borcherds products associated with lattices of prime discriminant.

Ramanujan J. 7, 49–61 (2003)
6. Bump, D.: Automorphic Forms and Representations. Cambridge University Press, London (1998)
7. Conway, J.H., Sloane, H.J.: Sphere Packings, Lattices and Groups, 3rd edn. Grundlehren der Mathemat-

ischen Wissenschaften, vol. 290. Springer, New York (1999)
8. Ebeling, W.: Lattices and Codes. A Course Partially Based on Lectures by F. Hirzebruch, Second revised

edition. Advanced Lectures in Mathematics. Vieweg, Braunschweig (2002)
9. Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Math., vol. 55. Birkhäuser, Basel (1985)

10. Fulton, W., Harris, J.: Representation Theory, Springer GTM 129. Springer, New York (1991)
11. Garrett P.: Pullbacks of Eisenstein series; applications. In: Automorphic Forms of Several Variables,

Taniguchi Symposium, Katata, 1983, Birhäuser (1984)
12. McGraw, W.J.: The rationality of vector valued modular forms associated with the Weil representation.

Math. Ann. 326, 105–122 (2003)
13. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Ergebnisse der Mathematik und ihrer Grenzgebi-

ete, vol. 73. Springer, New York (1973)
14. Miyake, T.: Modular Forms. Springer, New York (1989)
15. Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. (Russian) Izv.

Akad. Nauk SSSR Ser. Mat. 43, 111–177, 238 (1979). English translation in Mathematics of the U.S.S.R.,
Izvestia 14, 103–167 (1980)

16. Nobs, A., Wolfart, J.: Die irreduziblen Darstellungen der Gruppen SL2(Zp), insbesondere SL2(Z2). I.
Teil. Comment Math. Helvet. 51, 491–526 (1976)

17. Piatetski-Shapiro, I., Rallis, S.: L-functions for Classical Groups. Lecture Notes in Mathematics, vol.
1254. Springer, Berlin (1987)

18. Scheithauer, N.R.: On the classification of automorphic products and generalized Kac-Moody alge-
bras. Invent. Math. 164, 641–678 (2006)

19. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University
Press, Princeton (1971)

123



270 J. H. Bruinier, O. Stein

20. Shimura, G.: On modular forms of half integral weight. Ann. Math. 97, 440–481 (1973)
21. Skoruppa, N.-P.: Developments in the theory of Jacobi forms. In: Kuznetsov, N., Bykovsky, V., (eds.)

Proceedings of the Conference on Automorphic Funtions and Their Applications, Chabarovskpp,
pp. 167–185. The USSR Academy of Science (1990) (see also MPI-preprint 89-40, Bonn (1989))

22. Skoruppa, N.-P., Zagier, D.: Jacobi forms and a certain space of modular forms. Invent. Math. 94, 113–146
(1998)

123


	The Weil representation and Hecke operators for vector valued modular forms
	Abstract
	1 Introduction
	2 Discriminant forms and the Weil representation
	3 Extending the Weil representation
	3.1 The case of even signature
	3.2 The case of odd signature

	4 Hecke operators on vector valued modular forms
	4.1 The case of even signature
	4.2 The case of odd signature
	4.3 A Hecke algebra on vector valued modular forms

	5 The Weil representation on double cosets


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


