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Abstract. We define two L-functions associated to a common vector valued eigenform f
transforming with the “finite” Weil representation. The first one can be seen as a standard
zeta function defined by the eigenvalues of f . The second one can be interpreted as standard
L-function defined as an Euler product where each p-factor is a rational function in terms of
two unramified characters of the p-adic field Qp. We show that both L-functions are related
and prove further that they both can be continued meromorphically to the whole complex
s-plane.

1. Introduction

Vector valued modular forms transforming with the Weil representation play a prominent
role in the theory of Borcherds products, see e. g. [Bo] or [Br1]: The weakly holomorphic forms
of this type serve as input to the celebrated Borcherds lift, which maps them to meromorphic
modular forms on orthogonal groups whose zeroes and poles are supported on special divisors
and which possess an infinite product expansion. This lift has many important applications
in geometry, algebra and in the theory of Lie algebras. Since their appearance in the works
of Borcherds and Bruinier, a lot of research regarding this type of modular forms has been
done and most of the classical theory of modular forms has been established over the past
years (see e. g. [Br1], [BS], [Br2], [St1] or [Mu1] and [St3]). However, still not much is known
about associated Dirichlet series. In [BS], a zeta function of the form

∑
d∈N

(d,N)=1
λf
(
d2 0
0 1

)
d−s

was introduced. In [St1] the analytic properties of the slightly different zeta function (4.12)
were investigated. So far, to the best of my knowledge, there has been no standard L-function
specified for this type of modular forms. So, it is quite natural to define such an L-function
and to study its analytic properties, which is the main goal of the present paper. This paper
can be understood as a second part of [St3]. Therein, we laid the foundations to define a
standard L-function by developing a theory of vector valued automorphic forms corresponding
to vector valued modular forms transforming according to the finite Weil representation. This
includes the study of the structure of a local vector valued spherical Hecke algebra depending
on the Weil representation ωf . All structural statements regarding this algebra assume that
the local discriminant group is anisotropic. Consequently, the definition of our standard L-
function relies also on this restriction.
In the present paper, two types of L-functions are defined. Both are associated to a common
Hecke eigenform f . The first one is defined in terms of the eigenvalues λf (D) of a family of
Hecke operators T (D) and is called standard zeta function in this paper. The second one, the
standard L-function, is constructed as an Euler product in terms of the Satake parameters
αi,p of f (which are ultimately given by two unramified characters of Qp), where p is a prime).
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It can be written in the form L(s, f) =
∏
p<∞ Lp(s, f) with

(1.1) Lp(s, f) = R(αi,p, p
s),

where R(αi,p, p
s) is a rational expression depending on the parameters αi,p and the prime

power ps. For both types of L-functions it is shown that they can be continued meromorphi-
cally to the whole complex s-plane. We also prove that both L-functions are related by an
explicit equation.

Note that some results of this paper may already be covered in a paper of Yamana ([Ya]),
who established analytic properties of a standard L-function associated to an automorphic
representation of the metaplectic group Mp(2n). Yet, these results seem not to be immediately
applicable to our setting and it is unclear how to recover the computations of the local Euler
factors from them (which play an important role in applications - see the remarks below).

The paper at hand is intended as a first step towards a more comprehensive study of L-
functions associated to vector valued automorphic forms for the Weil representation: Schei-
thauer (see [Sch] for example) and others investigated extensively a lifting from scalar valued
modular forms for Γ0(N), N the level of the lattice L (see below for more details), to vector
valued modular forms transforming with the Weil representation, which commutes with Hecke
operators on both sides. On the other hand, it is well known that there is a well established
theory of automorphic forms and automorphic representations of GL(2) connected to modular
forms for Γ0(N) (see e. g. [Ge]). It would be interesting to compare a vector valued automor-
phic form obtained from a lifted scalar valued modular form with the corresponding scalar
valued automorphic form. I expect that there is a relation between the associated standard
L-functions on both sides. This would hopefully allow one to place the standard L-functions
of this paper within in the Langlands framework. Another aspect of vector valued modular
forms is their relation to Jacobi forms of lattice index (see [Wa], p. 2085, [Br1], Ex. 1.3 or
[BS], Remark 4.11). I think it is worthwhile to investigate whether this relation carries over
to the attached standard L-functions on both sides with the same goal in mind as before. I
hope to come back these questions in the near future.
Also, this paper (and [St1]) can be used to prove more general results on the injectivity of the
Kudla-Millson lift along the lines of [BF]. The corresponding proof relies on the computation
of the local Euler factors of the introduced standard L-function. In turn, a generalization
of a converse theorem for lattices of level p as stated in [Br2] can be proven. This is indeed
achieved in [St2]. Although our results in the present paper are restricted to anisotropic dis-
criminant forms, based on them, we have established one the most general converse theorems
for the Borcherds lift (to the best of my knowledge).

Let us describe the content of the paper in more detail. To this end, let (L, (·, ·)) be an even
lattice of even rank m and type (b+, b−) with (even) signature sig(L) = b+ − b− and level N .
Associated to the bilinear form (·, ·) there is a quadratic form q. The modulo 1 reduction of
(·, ·) and q defines a bilinear form and quadratic form, respectively, on the discriminant form
D = L′/L. Here L′ is the dual lattice of L. The Weil representation ρL is a representation
of Γ = SL2(Z) on the group ring C[D]. In the first part of the paper a certain standard zeta
function Z(s, f) attached to common eigenform f is studied. Its local p-part is given by the

eigenvalues of the Hecke operators T
(
p−k 0

0 p−l

)
with 0 ≤ k ≤ l and k + l ∈ 2Z:

Zp(s, f) =
∑

(k,l)∈Λ+

λf

(
p−k 0

0 p−l

)
p−s(k+l),



STANDARD L-FUNCTION OF A VECTOR VALUED MODULAR FORM 3

where Λ+ is specified in (2.3). A connection to the local standard zeta function in [St1] is
then proved and thereby analytic properties of Z(s, f) can be deduced from those of the zeta
function in [St1].

The second part of this article deals with definition of the standard L-function of an
eigenform f and subsequently investigates its analytic properties. To sketch the central
ideas, we briefly summarize some facts and notation from [St3]: As usual, denote with Zp
the ring of p-adic integers and let Ẑ be

∏
p<∞ Zp. Moreover, by ωf =

⊗
p<∞ ωp we mean

the Weil representation of SL2(Ẑ) on a space SL (isomorphic to C[D]). In [St3], Section 3,
it is explained how ωf can be extended to some subgroup of GL2(Af ), where Af denotes the
finite adeles. Let Qp be subgroup of GL2(Qp) and Kp a subgroup of GL2(Zp). In terms of
these groups and the local Weil representation ωp one can define a vector valued spherical
Hecke algebra H(Qp//Kp, ωp). In [St3] its structure is determined and a set of generators
{Tk,l | (k, l) ∈ Λ+} is specified. Similar to other types of automorphic forms, there is an action
ofH(Qp//Kp, ωp) on the space of vector valued automorphic forms based on convolution. Any
eigenform F of all Tk,l with eigenvalues λF,p(Tk,l) defines a C-algebra homomorphism, which

in turn determines a pair of unramified characters (χ
(1)
F,p, χ

(2)
F,p).

A common way described in the literature (see for instance [Bo2], [BM], [BoSP] or [Sh1]) to
obtain (1.1), is to factorize the Hecke series∑

(k,l)∈Λ+

λF,p(Tk,l)p
−s(k+l).

We follow Arakawa [Ar], Section 5, to establish this factorization by means of an integral
representation of the Hecke series. On the one hand, we have up to some constant∑

(k,l)∈Λ+

λF,p(Tk,l)p
−s(k+l) =

∫
Qp
〈νs(g), ϕ(0)

p 〉〈φχ(g), ϕ(0)
p 〉dg

On the other hand, the integral on the right-hand side of this equation can be evaluated
resulting in the identity∫

Qp
〈νs(g), ϕ(0)

p 〉〈φχ(g), ϕ(0)
p 〉dg =

1 + χ1(p)χ2(p)p−2s

(1− χ1(p2)p−2s)(1− χ2(p2)p−2s)
.

Here χ denotes a couple of unramified characters (χ1, χ2) of Qp. The remaining notation for
the two formulas above can be found in Section 5. As indicated above, the right-hand side of
the last identity gives rise to our definition of the local standard L-function Lp(s, F ).

The last part of the paper deals with the analytic properties of L(s, F ). Following [Ar],
Section 5, again, we find a direct relation between the standard L-function and the zeta
function Z(s, f).The property of being meromorphic carries over to L(s, F ). As Z(s, f) does
not satisfy a functional equation, it is unclear whether L(s, F ) obeys a functional equation.

2. Notation

We adopt the notation in [St3]. Nevertheless, for convenience of the reader, we introduce
the most common symbols in the paper. As usual, we let e(z), z ∈ C, be the abbreviation for
e2πiz. For any prime p ∈ Z by Qp we mean the field of p-adic numbers and by Zp its ring of
p-adic integers.
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The groups listed below will appear frequently in this paper.

N(Qp) = {( 1 r
0 1 ) | r ∈ Qp} and N(Zp) accordingly,

Qp = {M ∈ GL2(Qp) | det(M) ∈ (Q×p )2},
Kp = {M ∈ GL2(Zp) | det(M) ∈ (Z×p )2},
Mp = {M ∈

(
r1 0
0 r2

)
∈ GL2(Qp) | det(M) ∈ (Q×p )2},

Dp =Mp ∩ Kp

(2.1)

Moreover, the subgroup

(2.2) K0(p) =
{(

a b
c d

)
∈ Kp | c ≡ 0 mod p

}
of Kp will be relevant. Throughout the paper we use the following abbreviations for certain
elements of these groups

n (c) = ( 1 0
c 1 ) , n(b) =

(
1 b
0 1

)
, m(s) =

(
s 0
0 s−1

)
, m(t1, t2) =

(
t1 0
0 t2

)
and w =

(
0 1
−1 0

)
.

Since Qp is locally compact (see [St3], Lemma 4.3), we may fix a Haar measure on Qp such
that

∫
G∩Kp dg = 1 for any of the groups G = Qp,Mp and N(Qp). We denote with µ(K) the

measure of any subgroup K of Kp.
Moreover, we will make frequently use of the following subsets of Z2:

Λ = {(k, l) ∈ Z2 | k, l ≥ 0 and k + l ∈ 2Z} and

Λ+ = {(k, l) ∈ Λ | k ≤ l}.
(2.3)

Finally, as usual, we write H = {τ ∈ C | Im(τ) > 0} for the complex upper half plane and( ·
d

)
for the Legendre symbol.

3. Review of [St3]

In this section we would like to present some results of [St3] which we will be relevant for
the present paper. This will hopefully improve the readability.

3.1. Local Weil representation ωp, [St3], Sect. 3. Let (L, (·, ·)) be an even, non-degenerated
lattice of signature b+ − b− and even rank b+ + b−. Associated to L is dual lattice L′ and
the quadratic module D = L′/L. Moreover, put V = L⊗Q. Let p be an odd prime dividing
|D|. Then Dp means the p-group of D and Lp = L ⊗ Zp is the corresponding p-adic lattice.
Note that Dp is isomorphic to the group L′p/Lp. By ωp we mean the “p”-part of the adelic
Weil representation ωf of SL2(A) × O(V )(A), where A is the ring of the adeles. In Section
3 of [St3] the extension of the local Weil representation ωp from SL2(Zp) to the group Kp is
specified. Since several formulas later in the present paper depend on the explicit evaluation
of ωp on Kp, we briefly recapitulate the relevant facts on ωp. The representation space of

ωp is SLp =
⊕

µp∈Dp Cϕ
(µp)
p , where ϕ

(µp)
p is a Schwartz-Bruhat function given by 1µp+Lp , the

characteristic function of the coset µp + Lp in L′p/Lp. Let

ψp : Qp/Zp → C×, xp 7→ ψp(xp) = e(x′p)

the conjugate of the “standard additive” character of Qp, where x′p ∈ Q/Z is the principal
part of xp. Associated to ψp, in the Schrödinger model, ωp is defined on the generators of
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SL2(Zp) as follows:

ωp(n(b))ϕ(µ)
p = ψp(bq(µ))ϕ(µ)

p

ωp(w)ϕ(µ)
p =

γp(Dp)

|Dp|1/2
∑
νp∈Dp

ψp((µp, νp))ϕ
(νp)
p

ωp(m(a))ϕ
(µp)
p = χV,p(a)ϕ

(a−1µp)
p ,

(3.1)

where γ(Dp) is the local Weil index and χV,p(a) = (a, (−1)m/2|Dp|)p =
(

a
|Dp|

)
is the local

Hilbert symbol. We also repeat the action of diagonal matrices m(t1, t2) ∈ Kp in the Weil
representation ωp. We have

(3.2) ωp(m(t1, t2))ϕ
(µp)
p =

(
t1
|Dp|

)
ϕ

(t−1t2µp)
p ,

where det(m(t1, t2)) = t2 ∈ Z×p . If p is coprime to |D|, then L′p/Lp = 0 +Lp and ωp is trivial.

3.2. The Hecke algebras H(Qp//Kp, ωp) ([St3], Sect. 4. Let p be prime andH(Qp//Kp, ωp)
be set of maps F : Qp → End(SLp) satisfying

i) F is supported on finitely many double cosets KpgKp, g ∈ Qp.
ii) F (k1gk2) = ωp(k1) ◦ F (g) ◦ ωp(k2) for all k1, k2 ∈ Kp and g ∈ Qp.

H(Qp//Kp, ωp) becomes with respect to convolution an associative C-algebra. In [St3] a set of
generators ofH(Qp//Kp, ωp) is given. For a prime p dividing |D| a subalgebraH+(Qp//Kp, ωp)
is considered. Under the assumption that Dp is an anisotropic quadratic module, a set of
generators of H+(Qp//Kp, ωp) is given by

(1)

(3.3) Tk,l : SLp → SLp , ϕ
(µp)
p 7→ ϕ

p
1
2 (l−k)µp
p = ϕ(0)

p

for (k, l) ∈ Λ+ with k < l, where Tk,l is supported on Kpm(pk, pl)Kp.
(2)

(3.4) Tk : SLp → SLp , ϕ
(µp)
p 7→ ϕ

(µp)
p

for (k, l) ∈ Λ+ with k = l, where Tk is supported on Kpm(pk, pk)Kp.
For (p, |D|) = 1 the algebra H(Qp//Kp, ωp) is much simpler and well known. A set of
generators given by

(3.5) {1Kpm(pk,pl)Kp idSLp | (k, l) ∈ Λ+},

where 1Kpm(pk,pl)Kp is the characteristic function of Kpm(pk, pl)Kp. The so called spherical

map or Satake map is a means to get a better understanding of the structure ofH+(Qp//Kp, ωp)
and H(Qp//Kp, ωp). If p divides |D|, we consider a variant of the classical Satake map:

S : H(Qp//Kp, ωp)→ H(Mp//Dp, ωp|SN(Zp)

Lp

),

T 7→

m 7→ δ(m)1/2
∑

n∈N(Qp)/N(Zp)

T (mn)
|SN(Zp)

Lp

 .
(3.6)
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Restricted to H+(Qp//Kp, ωp), the map S defines an isomorphism between H+(Qp//Kp, ωp)
and HW (Mp//Dp, ωp

|S
N(Zp)
Lp

). In the case of (p, |D|) = 1, the composition of T 7→ 〈T, ϕ(0)
p 〉

with the classical Satake map S

(3.7) m 7→

(
m 7→ δ(m)1/2

∫
N(Qp)

f(mn)dn

)

gives an isomorphism from H(Qp//Kp, ωp) to H(Mp//Dp)W .

3.3. Vector valued automorphic forms and the action of H(Qp//Kp, ωp), Sect. 5.
Let f ∈ Sκ(ρL) be a cusp form (for the definition of Sκ(ρL) see the next section). We associate
to f a vector valued automorphic form by

Ff : G(Q) \ G(A)→ SL, g 7→ Ff ((g) = ωf (k)−1j(g∞, i)
−κf(g∞i),

where g = γ(g∞×k) describes the decomposition of g with respect to the strong approximation
theorem and the space SL is defined as SLp in Subsection 3.1. The mapping f 7→ Ff is in
fact an isomorphism from Sκ(ρL) to the space Aκ(ωf ) of automorphic forms, which is defined
similar to the classical space of elliptic automorphic forms. This isomorphism is denoted
with A . There is an action of the Hecke algebras H+(Qp//Kp, ωp) (or H(Qp//Kp, ωp) if
(p, |D|) = 1) by convolution (analogous to the case of scalar valued spherical Hecke algebras)
on automorphic forms: Let F (g) =

⊗
p<∞ Fp(g) ∈ Aκ(ωf ) and Tp ∈ H+(Qp//Kp, ωp) (or

H(Qp//Kp, ωp) if (p, |D|) = 1)). Then we define

(3.8) T Tp : Aκ(ωf )→ Aκ(ωf ), T Tp(F )(g) =
∑

xp∈Qp/Kp

RTp(ιp(xp))F (gιp(xp)),

where

(3.9) RTp(h) is the operator F 7→ RTp(h)F =
⊗
q<∞

R
Tp
q (hq)Fq

with

(3.10) R
Tp
q (hq)Fq(gq) =

{
Fq(g∞, gqhq), q 6= p

Tp(hp)(Fp(g∞, gp)), q = p.

The action of these Hecke algebras via (3.8) is compatible with that of Hecke operators on
the space Sκ(ρL). In fact, it can be proved that

(3.11) T Tk,l(Ff ) = F
p(k+l)(κ2−1)T (m(p−k,p−l))f

for all (k, l) ∈ Λ+, which is an analogue of the classical result for scalar valued modular
forms. Based on (3.11), it is worthwhile to observe that a common eigenform f ∈ Sκ(ρL)
of the Hecke operators T (m(p−k, p−l)) for all (k, l) ∈ Λ+ determines a via its eigenvalues a
C-algebra homomorphism of H+(Qp//Kp, ωp) (or H(Qp//Kp, ωp)) (see [St3], Remark 5.10.
for more details).
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4. Hecke operators T (m(pk, pl)) and standard zeta-functions

In this section we briefly summarize some facts on lattices, discriminant forms, Gauss
sums and the “finite” Weil representation. We also recall the definition of vector valued
modular forms for the Weil representation and some related theory relevant for the present
paper. Subsequently, we explain how to extend the definition of the Hecke operator T (p2l)∗

in Definition 5.5 of [BS] to the action of double cosets of the form Γm(pk, pl)Γ. In [BS] a
standard zeta function associated to an eigenform of all Hecke operators T (m(n2, 1)), n ∈ N
is introduced. Here, we consider a variant of this zeta function and state some analytic
properties based on the results in [St1].

Let L be a lattice of rank m equipped with a symmetric Z-valued bilinear form (·, ·) such
that the associated quadratic form

q(x) :=
1

2
(x, x)

takes values in Z for x ∈ L. We assume that m is even, L is non-degenerate and denote its
type by (b+, b−) and its signature b+ − b− by sig(L). Note that sig(L) is also even. We stick
with these assumptions on L for the rest of this paper unless we state it otherwise. Further,
let L′ be the dual lattice of L. Since L ⊂ L′, the elementary divisor theorem implies that
L′/L is a finite group. We denote this group by D and for any prime p dividing |D| by Dp its
p-group. The modulo 1 reduction of both, the bilinear form (·, ·) and the associated quadratic
form, defines a Q/Z-valued bilinear form (·, ·) with corresponding Q/Z-valued quadratic form
on D. We call D combined with (·, ·) a discriminant form or a quadratic module. We call it
anisotropic, if q(µ) = 0 holds only for µ = 0. Further, we denote by N the level of the lattice
L. It is the smallest positive integer such that Nq(λ) ∈ Z for all λ ∈ L′.

Let d an integer. By gd(D) we denote the Gauss sum

(4.1) gd(D) =
∑
λ∈D

e(dq(λ))

and g(D) = g1(D). Since fractions of these Gauss sums are of some relevance in this paper,
we gather some facts on the sums gd(D) and quotients thereof (see Lemma 2.1 in [St3])

Lemma 4.1. i) The Gauss sums gd(D) satisfy the properties

g−d(D) = gd(D)

gd(D ⊕D′) = gd(D)gd(D
′)

gdr(D) = gd(D),

where r ∈ Z is square in (Z/NZ)×.
ii) If d is coprime to |D|, we have

(4.2)
g(D)

gd(D)
=

(
d

|D|

)
e

(
(d− 1) oddity(D)

8

)
If |D| is odd, the right-hand side of (4.2) simplifies to the quadratic character

(4.3) χD(d) =

(
d

|D|

)
.

The Weil “finite” representation ρL is a representation of Γ = SL2(Z) on the group ring
C[D]. We denote the standard basis of C[D] by {eλ}λ∈D. We refer to [Br1] or [BS] for the
definition of ρL on the generators of Γ.
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A holomorphic function f : H → C[D] is called a vector valued modular form of weight κ
and type ρL for Γ if f |κ,L γ = f for all γ ∈ Γ, and if f is holomorphic at the cusp ∞. Here

f |κ,L γ = j(γ, τ)−κρL(γ)−1f(γτ),

where

j(γ, τ) = det(γ)−1/2(cτ + d)

is the usual automorphy factor if γ =
(
a b
c d

)
∈ GL+

2 (R) and the last condition means that all
Fourier coefficients c(λ, n) of f with n < 0 vanish. If in addition c(λ, n) = 0 for all n = 0,
we call the corresponding modular form a cusp form. We denote by Mκ(ρL) the space of all
such modular forms, by Sκ(ρL) the subspace of cusp forms. For more details see e.g. [Br1] or
[BS]. Note that Mκ(ρL) = {0} unless

(4.4) 2κ ≡ sig(L) (mod 2).

Therefore, if the signature of L is even, only non-trivial spaces of integral weight can occur.
In [BS] Hecke operators T (m(d2, 1), d) on Sκ(ρL) were defined in the usual way by the

action of double cosets Γm(d2, 1)Γ:

(4.5) f |κ,L T (m(d2, 1), d) = det(m(d2, 1))κ/2−1
∑

M∈Γ\Γm(d2,1)Γ

f |κ,L (M,d),

where d is one of the square roots of det(m(d2, 1)). More generally, this definition works
for Hecke operators T (g, r) with g being an element of some subgroup of GL+

2 (Q) whose
determinant is coprime to N and satisfies det(g) ≡ r2 mod N . As demonstrated in [BS],
Chapter 5, (4.5) defines still a Hecke operator if we assume (d,N) > 1. Yet in general (4.5)
does not make sense for matrices g ∈ GL+

2 (Q) with (det(g), N) > 1 since there is no definition
of ρL for these matrices. However, in [St1] a definition of the Weil representation for certain
diagonal matrices in GL+

2 (Q) was given. Here, we pick up these ideas and adapt them slightly
to get smoother formulas and avoid several technical difficulties later in the paper:

Let k, l ∈ Z with k|l and (kl,N) > 1. We assume further that l
k is a square. Obviously,

(4.6) m(l, k) = m(k, k)m(
l

k
, 1) and m(k−1, l−1) = m(

l

k
, 1)m(l, l)−1.

The action of ρL(m(k, k)) was given in [BS], (3.5), for alle integers k with (k,N) = 1, simply

by multiplication with
g(D)

gk(D)
. Now let k be an integer with (k,N) =

∏
i p
ei
i , Dpi the pi-

group of D and D(k) = (
⊕

iDpi)
⊥ the orthogonal complement of

⊕
iDpi in D. Then by

construction, (k, |D(k)|) = 1 and in particular k is coprime to the level of |D(k)|. Then we
put

(4.7) ρL(m(k, k))eλ =
g(D(k))

gk(D(k))
eλ

and fittingly

(4.8) ρL(m(k, k)−1)eλ = ρ−1
L (m(k, k))eλ =

gk(D(k))

g(D(k))
eλ.
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Note that this definition is compatible with the one in [BS] in the case that (k,N) = 1. Also,
for a prime p dividing |D| we have

ρL(m(pk, pk))eλ =
g(D⊥p )

gpk(D⊥p )
eλ.

Based on this and the decompositions (4.6),

(4.9) ρ−1
L (m(l, k))eλ =

gk(D(k))

g(D(k))
ρ−1
L (m(

l

k
, 1))eλ

and

(4.10) ρ−1
L (m(k−1, l−1))eλ =

g(D(l))

gl(D(l))
ρ−1
L (m(

l

k
, 1))eλ.

Here, the Weil representations on the right-hand side of (4.9) and (4.10) are specified in [BS],
(5.1) and (5.4), respectively.

Employing the same arguments as in [St1], p. 12-13, the Weil representation can in the
case of (kl,N) > 1 be extended to double cosets of the form Γm(l, k)Γ and Γm(k−1, l−1)Γ.
The action of these double cosets by means of (4.5) yield the Hecke operators T (m(l, k)) and
T (m(k−1, l−1)) on the space Sκ(ρL).

Lemma 4.2. Let k, l ∈ Z with k|l and l
k a square. The Hecke operators T (m(k−1, l−1) and

T (m(l, k)) are related to T (m( lk , 1)) by

T (m(l, k)) = kκ−2 gk(D(k))

g(D(k))
T (m(

l

k
, 1)),

T (m(k−1, l−1)) = lκ−2 g(D(l))

gl(D(l))
T (m(

l

k
, 1)).

Proof. Let Γm(l, k)Γ =
⋃
i Γαi be a decomposition of Γm(l, k)Γ into left cosets. Then⋃

i Γm(k, k)−1αi is a decomposition of Γm( lk , 1)Γ into left cosets. Consequently, using (4.5)
we obtain

T (m(l, k)) = kκ−2 gk(D(k))

g(D(k))
T (m(

l

k
, 1)).

The proof of the identity for T (m(k−1, l−1)) procceeds the same way. �

As a corollary we immediately get

Corollary 4.3. Let k, l ∈ Z with k|l and l
k a square. Also, let f ∈ Sκ,L be simultaneous

eigenform of all Hecke operators T (m(d2, 1)) with eigenvalue λ(m(d2, 1)). Then f is also an
eigenform with respect to the Hecke operators T (m(k−1, l−1)) and T (m(l, k)) with eigenvalues

(4.11) λ(m(k−1, l−1)) = lκ−2 g(D(l))

gl(D(l))
λ(m(

l

k
, 1)) and λ(m(l, k)) = kκ−2 gk(D(k))

g(D(k))
λ(m(

l

k
, 1))

respectively and vice versa.

Let f ∈ Sκ(ρL) be a simultaneous eigenform of all Hecke operators T (m(d2, 1)), d ∈ N,
with eigenvalues λf (m(d2, 1)) (see Remark 6.1, ii) in [St1] for some details when such a cusp
form exists). In [St1] the analytic properties of the standard zeta function

(4.12) Z(s, f) =
∑
d∈N

λf (m(d2, 1))d−2s



10 OLIVER STEIN

were studied. By Theorem 5.6 in [BS] this series possesses an Euler product

(4.13) Z(s, f) =
∏
p

Zp(s, f)

with Zp(s, f) =
∑

k∈N0
λf (m(p2k, 1))p−2ks. Let us consider the related local zeta function

(4.14) Zp(s, f) =
∑

(k,l)∈Λ+

λf (m(p−k, p−l))p−s(k+l).

In view of Corollary 4.3 we have

Corollary 4.4. The local zeta function Zp(s, f) is equal to∑
(k,l)∈Λ+

pl(κ−2) g(D(pl))

gpl(D(pl))
λ(m(pl−k, 1))p−s(k+l)

=
∑

(k,l)∈Λ+

g(D(pl))

gpl(D(pl))
λ(m(pl−k, 1))p−skp(κ−2−s)l.

(4.15)

Subsequently, we want to relate the zeta functions Z(s, f) and Z(s, f). To distinguish the

cases of “good” and “bad” primes p, we will evaluate the quotients
g(D(pl))

gpl(D(pl))
explicitly. To

this end, we assume that level N of L is square free. We keep this assumption whenever we
are dealing with the zeta function Z(s, f). By [We1], Lemma 5.8, we know that

(4.16) n 7→ χD(n) =
gn(D)

g(D)

is a quadratic character of (Z/NZ)×. More specifically, by Lemma 4.1, ii)

(4.17)
g(D)

gn(D)
=
gn(D)

g(D)
=

(
n

|D|

)
e

(
(n− 1)oddity(D)

8

)
.

A proof for the last equation can be found in [We1], Theorem 5.17. It is known that if |D| is

odd, oddity(D) ≡ 0 mod 8, see e. g. [We1], Lemma 5.8 or [CS], Chap. 15, § 7. Thus,
g(D)

gn(D)
simplifies to

(4.18) χD(n) =

(
n

|D|

)
in this case. Consequently, we have

(4.19)
g(D(pl))

gpl(D(pl))
= χD(pl)(p

l)

for all l ∈ N0. Notice that if pl is a square, gpl(D(pl)) = g(D(pl))) and χD(pl)(p
l) = 1.

Also notice that for a prime p the group D(pl) is equal to D(p) = D⊥p . For the subsequent
calculations we will therefore use the symbol χD(p) instead of χD(pl).

For a prime p dividing N the right-hand side of (4.15) becomes∑
(k,l)∈Λ+

χD(p)(p
l)λf (m(pl−k, 1))p−l(κ−2)p−s(k+l).(4.20)
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For a “good” prime p - N we have

(4.21) Zp(s, f) =
∑

(k,l)∈Λ+

χD(pl)λf (m(pl−k, 1))p−l(κ−2)p−s(k+l).

Let χ be either of the characters χD, χD(p). Then we can write for either of the above sums:∑
(k,l)∈Λ+

χ(pl)p−k(2s+κ−2)λf (m(pl−k, 1))p−(l−k)(s+κ−2).

For any fixed k ∈ N0 the index l runs through the set {2n + k | n ∈ N0} to satisfy the
conditions l + k ∈ 2Z and l ≥ k. Therefore, the index l − k runs through

{2(n− k) | n ∈ N0 with n ≥ k} = 2N0.

Thus, we may rewrite the latter series above as∑
k

p−k(2s+κ−2)
∑
n

χ(p2n+k)λf (m(p2n, 1))p−2n(s+κ−2)

=
∑
k

χ(pk)p−k(2s+κ−2)
∑
n

λf (m(p2n, 1))p−2n(s+κ−2).

Taking this into account, we may write (4.20) in the form

(4.22) Zp(s+ κ− 2, f)Lp(χD(p), 2s+ κ− 2).

Accordingly, for a “good” prime, (4.21) can be expressed as Zp(s+κ−2, f)Lp(χD, 2s+κ−2).
Globally, we then have

(4.23) Z(s, f) =
∏
p||D|

Lp(2s+ κ− 2, χD(p))L(2s+ κ− 2, χD)Z(s+ κ− 2, f),

where

i)

Lp(s, χD(p)) = (1− χD(p)(p)p
−s)−1,

ii) L(s, χD) is the Dirichlet L-series associated to χD.

We can now state the following theorem regarding the analytic properties of Z(s, f).

Theorem 4.5. Let κ ∈ 2Z, κ ≥ 3, satisfy 2κ+ sig(L) ≡ 0 mod 4 and f ∈ Sκ(ρL) a common
eigenform of all Hecke operators T (m(k2, 1)), k ∈ N. Then the zeta function Z(s, f) has a
meromorphic continuation to the whole s-plane.

Proof. This results from (4.23): Theorem 6.6 of [St1] provides the desired property for Z(s, f).
In fact, the slightly altered action of the Weil representation on scalar matrices only affects

the pullback formula in Theorem 5.3 but not the proof of Theorem 6.6 as the factor
gd(L)

g(L)
cancels out. For L(s, χD) this is well known and clear for the remaining factor anyway. �
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5. Standard L-function of a common Hecke eigenform

This chapter is concerned with several issues regarding a standard L-function of a vector
valued Hecke eigenform. First, we will motivate and define a standard L-function L(s, F )
attached to a vector valued automorphic form F . Its definition is based on the factorization
of the Hecke series. To this end, we follow the classical contributions in the literature in this
regard (see e. g. the approach of Bouganis and Marzec ([BM]), Böcherer and Schulze-Pillot
([BoSP]) and Shimura ([Sh])) adapted to our situation. Via the correspondence in [St3],
Theorem 5.9, it is then possible to associate the same L-function to the corresponding Hecke
eigenform fF . Along the way we establish most of the results to prove a relation between the
standard zeta function Z(s, f) and L(s, f). Afterwards, based on this relation, we prove that
the introduced standard L-function can be continued meromorphically to the whole s-plane.

We assume in the whole Section that the p-group Dp is anisotropic. We adopt the notation
of [St3], Section 3.

5.1. Standard L-function of a vector valued automorphic form. This section provides
the necessary theory to define a standard L-function attached to a vector valued automorphic
form F as defined in [St3]. This is essentially the well known theory of spherical functions as
it appears in many places (see e. g. [Ca], [McD] or [Sa]). Here we largely follow [Ar], Chapter
5, and translate several statements therein to our setting. For primes p which are coprime
to |D| the proofs carry over almost verbatim. In the case of primes p dividing |D| the Hecke
algebra H+(Qp//Kp, ωp) is more complicated due to the Weil representation, causing serious
difficulties. The established results then provide the means to define a standard L-function
L(s, F ) along the lines of [BM], Chapter 7.2.

The action of the local Weil representation of the group K0(p) on S
N(Zp)
Lp

will be needed

frequently in the proof of the next few assertions.

Lemma 5.1. Let
(
a b
c d

)
∈ K0(p). Then

(5.1)
(
a b
c d

)
= n (ca−1)m(a, a−1(ad− bc))n(ba−1)

and

(5.2) ωp
(
a b
c d

)
ϕ(0)
p = χDp(a)ϕ(0)

p .

Proof. First note that if c ∈ pZp, then a must be an element of Z×p . The decomposition (5.1)
can be checked by a direct calculation.

To compute ωp
(
a b
c d

)
ϕ

(0)
p , we use the defining formulas of ωp (cf. Section 3.1 and [St3],

Theorem 4.8 for matrices in Dp):

ωp
(
a b
c d

)
ϕ(0)
p = ωp(n (ca−1))ωp(m(a, a−1(ad− bc)))ωp(n(ba−1))ϕ(0)

p

= ωp(n (ca−1))ωp(m(a, a−1(ad− bc)))ϕ(0)
p

= ωp(n (ca−1))

(
a

|Dp|

)
ϕ(0)
p

=

(
a

|Dp|

)
ϕ(0)
p .

For the second equation we employed that ψp(ca
−1q(0)) = 1, the last equation is due to [St3],

Lemma 3.1. �
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Lemma 5.2. Let p be a prime.

i) If p is coprime to |D|, any C-algebra homomorphism ξ : H(Qp//Kp, ωp)→ C is of the
form

(5.3) T 7→ ξ(T ) = χ̂S(T ),

Here χ is some uniquely determined unramified character of Mp and

(5.4) χ̂S(T ) =
∑

(k,l)∈Z2

S(〈T, ϕ(0)
p 〉)(m(pk, pl))χ(m(pk, pl)),

S being the classical Satake map.
ii) If p divides |D|, any C-algebra homomorphism ξ : H+(Qp//Kp, ωp) → C is of the

form

T 7→ ξ(T ) = χ̂S(T ) =
∑

(k,l)∈Z2

〈(IχDp ◦ S(T ))(m(pk, pl)), ϕ(0)
p 〉)χ(m(pk, pl))

=
∑

(k,l)∈Z2

〈S(T )(m(pk, pl)), ϕ(0)
p 〉)χ(m(pk, pl)),

(5.5)

where S is the Satake map given in [St3], (4.15), IχDp is the isomorphism in [St3], (4.13)

and χ is again an unramified character of Mp.

Proof. First, recall that χ̂S and χ̂S are well defined since S(〈T, ϕ(0)
p 〉) and 〈S(T ), ϕ

(0)
p 〉 have

finite support on Mp.

i) As ωp is trivial in this case, f 7→ 〈f, ϕ(0)
p 〉 is an isomorphism of the Hecke algebras

H(Qp//Kp, ωp) and H(Qp//Kp). From [Ca], Corollary 4.2, we know that any algebra homo-
morphism of H(Qp//Kp) is given by

g 7→
∫
t∈Mp

S(g)(t)χ(t)dt,

where χ is an unramified character ofMp. Since S(g) is bi-invariant under Dp and χ unram-
ified, we obtain the above stated term. (note that we adopted the normalisation of the Haar
measures in [Ca], see Section 2).

ii) The proof in i) essentially relies on the fact that any C-algebra homomorphism ξ of
the group algebra C[Mp/Dp] can be written in terms of a uniquely determined unramified
character χ of Mp by

ξ(T ) =
∑

m∈Mp/Dp

T (m)χ(m).

By [St3], Theorem 4.10, Theorem 4.8, ii), and the remark directly after its proof, we know
that

T 7→ 〈IχDp ◦ S(T ), ϕ(0)
p 〉

maps H+(Qp//Kp, ωp) isomorphically to a subalgebra of C[Mp/Dp]W inducing the claimed
form of ξ. �

Note that each unramified character χ of Mp is of the form χ(m(t1, t2)) = χ1(t1)χ2(t2),
where χi is an umramified character of Q×p , that is, χi is trivial on Zp.
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Attached to an unramified character χ ofMp we now introduce a operator valued map on
Qp. The scalar valued version is part of the classical zonal spherical function associated to χ.
(cf. e. g. [Ca], p. 150): Let

φχ : Qp → End(SLp),{
g = k1mk2 7→ φχ(k1mk2) = ωp(k1)φχ(m)ωp(k2), k1, k2 ∈ Kp,m ∈Mp

g = mnk 7→
(
φχ(mnk)ϕ

(γp)
p = (χδ

1
2 )(m)ϕ

(γp)
p

)
, n ∈ N(Zp),m ∈Mp, k ∈ Kp,

(5.6)

where δ(m(t1, t2)) =
∣∣∣ t1t2 ∣∣∣p is the modulus character. The next lemma is in principle well

known for primes p coprime to |D|.

Lemma 5.3. Let p be a prime, µ(K0(p)) the measure of K0(p), T ∈ H(Qp//Kp, ωp) and

κp =

(
|Dp|p
γp(Dp)2

+ 1

)
µ(K0(p)).

Then the following identities hold:

(5.7)

∫
Qp
〈T (g), ϕ(0)

p 〉〈φχ(g)|
S
N(Zp)
Lp

, ϕ(0)
p 〉dg = χ̂S(T )

if p is coprime to |D|.

(5.8)
1

κp

∫
Qp
〈T (g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉〈φχ(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉dg = χ̂S(T )

if p is a divisor of |D|.

Proof. If (p, |D|) = 1, the algebra H(Qp//Kp, ωp) is isomorphic to the classical algebra
H(Qp//Kp). In particular, any T ∈ H(Qp//Kp, ωp) is bi-invariant with respect to Kp. There-
fore, the result can be proved as in [McD], p. 46, or [Ca], p. 150. Following the proof of
either of the cited sources, we end up with

(5.9)

∫
m∈Mp

χ(m)δ(m)1/2

∫
N(Qp)

〈T (mn), ϕ(0)
p 〉dn.

Since S(〈T, ϕ(0)
p 〉) is bi-invariant under Dp and χ is unramified, this is equal to∑

(k,l)∈Z2

χ(m(pk, pl))S(〈T, ϕ(0)
p 〉)(m(pk, pl)).

For p | |D|, the computations are more involved since the integrand is not bi-invariant under
Kp. However, it is still possible to remedy the absence of the bi-invariance. To this end, we
use two facts. First, due to Lemma 5.1 we know that the Weil representation ωp(k

′) acts

on S
N(Zp)
Lp

by multiplication with the quadratic character χDp for any k′ ∈ K0(p). Secondly,

we use Lemma 13.1 of [KL] (whose proof is still valid for the groups Kp and K0(p)), which
provides with {T jw−1 | j ∈ Z/pZ} ∪ {12} a set of coset representatives of Kp/K0(p) allowing
us to calculate ωp on Kp explicitly. As a consequence, we write the integral

∫
Kp in the form∫

Kp/K0(p)

∫
K0(p)

=
∑

Kp/K0(p)

∫
K0(p)

. Thus, taking this and the Iwasawa decomposition into
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account, we have

∫
Qp
〈T (g)|

SN(Zp)
, ϕ(0)

p 〉〈φχ(g)|
SN(Zp)

, ϕ(0)
p 〉dg

=
∑

(k,l)∈Z2

∫
N(Qp)

∫
Kp
〈T (m(pk, pl)n)ωp(k)ϕ(0)

p , ϕ(0)
p 〉〈φχ(m(pk, pl))ωp(k)ϕ(0)

p , ϕ(0)
p 〉dk dn

=
∑

(k,l)∈Z2

∫
N(Qp)

∫
K0(p)

×

〈T (m(pk, pl)n)ωp(k
′)ϕ(0)

p , ϕ(0)
p 〉〈φχ(m(pk, pl))ωp(k

′)ϕ(0)
p , ϕ(0)

p 〉dk′ dn

+
∑

(k,l)∈Z2

∫
N(Qp)

∑
j∈Z/pZ

∫
K0(p)

×

〈T (m(pk, pl)n)ωp(T
−jw)ωp(k

′)ϕ(0)
p , ϕ(0)

p 〉〈φχ(m(pk, pl))ωp(T
−jw)ωp(k

′)ϕ(0)
p , ϕ(0)

p 〉dk′ dn.

(5.10)

In light of the decomposition (5.1) of any matrix k′ =
(
a b
c d

)
∈ K0(p), we may replace∫

K0(p)
with

∫
(Z×p )2

∫
Z×p

∫
Zp

∫
Zp

by Fubini’s theorem. Thus, by Lemma 5.1

∫
K0(p)

〈T (m(pk, pl)n)ωp(T
−jw)ωp(k

′)ϕ(0)
p , ϕ(0)

p 〉〈φχ(m(pk, pl))ωp(T
−jw)ωp(k

′)ϕ(0)
p , ϕ(0)

p 〉dk

=

∫
(Z×p )2

∫
Z×p

∫
Zp

∫
Zp
×

〈T (m(pk, pl)n)ωp(T
−jw)χDp(a)ϕ(0)

p , ϕ(0)
p 〉〈φχ(m(pk, pl))ωp(T

−jw)χDp(a)ϕ(0)
p , ϕ(0)

p 〉dc db da dr.

(5.11)

As quadratic character, the χDp(a) in both scalar products 〈·, ·〉 cancel out and we obtain for
the right-hand side of (5.11)

µ(K0(p))〈T (m(pk, pl)n)ωp(T
−jw)ϕ(0)

p , ϕ(0)
p 〉〈φχ(m(pk, pl))ωp(T

−jw)ϕ(0)
p , ϕ(0)

p 〉

The formulas (2.7) in [St3] for ωp allow us to evaluate the sum over j explicitly:

ωp(T
jw−1)ϕ(0)

p =
|Dp|1/2

γp(Dp)

∑
γp∈Dp

e(jq(γp))ϕ
(γp)
p .

Thus, the definition of φχ yields

〈T (m(pk, pl)n)ωp(T
jw−1)ϕ(0)

p , ϕ(0)
p 〉〈φχ(m(pk, pl))ωp(T

jw−1)ϕ(0)
p , ϕ(0)

p 〉

=
|Dp|

γp(Dp)2

∑
γp,µp∈Dp

ψp(j(q(γp) + q(µp)))〈T (m(pk, pl)n)ϕ
(γp)
p , ϕ(0)

p 〉〈φχ(m(pk, pl))ϕ
(µp)
p , ϕ(0)

p 〉

=
|Dp|

γp(Dp)2

∑
γp∈Dp

ψp(j(q(γp))〈T (m(pk, pl)n)ϕ
(γp)
p , ϕ(0)

p 〉(δ1/2χ)(m(pk, pl)).
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By means of the standard Gauss sum identity applied to the sum over j ∈ Z/pZ, we finally
find ∫

Kp
〈T (m(pk, pl)n)ωp(k)ϕ(0)

p , ϕ(0)
p 〉〈φχ(m(pk, pl))ωp(k)ϕ(0)

p , ϕ(0)
p 〉dk(

|Dp|p
γp(Dp)2

+ 1

)
µ(K0(p))〈T (m(pk, pl)n)ϕ(0)

p , ϕ(0)
p 〉(δ1/2χ)(m(pk, pl))

(5.12)

and therefore∫
Qp
〈T (g)|

SN(Zp)
, ϕ(0)

p 〉φχ(g)dg

= κp
∑

(k,l)∈Z2

δ(m(pk, pl))1/2χ(m(pk, pl)))

∫
N(Qp)

〈T (m(pk, pl)n)|
SN(Zp)

, ϕ(0)
p 〉dn

= κp
∑

(k,l)∈Z2

〈S(T )(m(pk, pl), ϕ(0)
p 〉χ(m(pk, pl))

as T|
SN(Zp)

is right-invariant under N(Zp). �

To relate L(s, F ) and Z(s, fF ), we calculate the integral∫
Qp
〈νs(g)|

S
N(Zp)
L

, ϕ(0)
p 〉〈φχ(g)|

S
N(Zp)
L

, ϕ(0)
p 〉dg

in two different ways. The first one is an analogue of Lemma 5.2 in [Ar]. Here for s ∈ C we
define νs : Qp → End(SLp) by

νs(k1gk2) = ωp(k1)νs(g)ωp(k2) for all k1, k2 ∈ Kp and all g ∈ Qp,

νs(m(pk, pl))ϕ
(γp)
p =

{
p−(k+l)sϕ

(pl−kγp)
p , (k, l) ∈ Λ+,

0, otherwise.

(5.13)

The proof of the next result makes use of the following observation:

νs(k1m(pk, pl)k2) = p−s(k+l)Tk,l(k1m(pk, pl)k2)(5.14)

for all k1, k2 ∈ Kp and all m(pk, pl) ∈Mp.

Lemma 5.4. Let p be a prime, χ be an unramified character of Mp,

Tk,l ∈

{
H(Qp//Kp, ωp), p - |D|,
H+(Qp//Kp, ωp), p | |D|,

and
BS(χ,X) =

∑
(k,l)∈Λ+

χ̂S(Tk,l)X
k+l and BS(χ,X) =

∑
(k,l)∈Λ+

χ̂S(Tk,l)X
k+l

where χ̂S, χ̂S are defined in Lemma 5.2. Then

i)

(5.15)

∫
Qp
〈νs(g), ϕ(0)

p 〉〈φχ(g), ϕ(0)
p 〉dg = B(χ, p−s)

if p - |D|.
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ii)

(5.16)

∫
Qp
〈νs(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉〈φχ(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉dg = κpB(χ, p−s)

if p | |D|, where κp is specified in Lemma 5.3.

Proof. For p coprime to |D| the proof is essentially the same as the one of Lemma 5.2 in [Ar].
One has just to replace the term νs with our corresponding νs and ϕα with Tk,l.

Again, the proof for p | |D| is more complicated. It uses the same ideas as the ones in the
proof of Lemma 5.3 and proceeds similar to the proof of [Ar], Lemma 5.2. By definition, the
support of νs is

⋃
(k,l)∈Λ+

Kpm(pk, pl)Kp. Using the Cartan decomposition, we then have

∫
Qp
〈νs(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉〈φχ(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉dg =

∑
(k,l)∈Λ+

∫
Kp

∫
Kp
〈ωp(k1)νs(m(pk, pl))ωp(k2)ϕ(0)

p , ϕ(0)
p 〉〈ωp(k1)φχ(m(pk, pl))ωp(k2), ϕ(0)

p 〉dk1 dk2

(5.17)

Bearing (5.14) in mind and the fact that the operator Tk,l is supported on Kpm(pk, pl)Kp, we
find that the last expression in (5.17) equals∑

(k,l)∈Λ+

p−s(k+l) gpl(Dp)

g(Dp)
×

∫
Kp

∫
Kp
〈ωp(k1)Tk,l(m(pk, pl)ωp(k2)ϕ(0)

p , ϕ(0)
p 〉〈ωp(k1)φχ(m(pk, pl))ωp(k2), ϕ(0)

p 〉dk1 dk2

=
∑

(k,l)∈Λ+

p−s(k+l)
∑

(i,j)∈Z2

×

∫
Kp

∫
Kp
〈ωp(k1)Tk,l(m(pi, pj)ωp(k2)ϕ(0)

p , ϕ(0)
p 〉〈ωp(k1)φχ(m(pi, pj))ωp(k2), ϕ(0)

p 〉dk1 dk2

=
∑

(k,l)∈Λ+

p−s(k+l)

∫
Qp
〈Tk,l(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉〈φχ(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉dg.

In light of Lemma 5.3 we obtain the result. �

Observe that in view of the following lemma, it is guaranteed that the Dirichlet series
B(χ, p−s) converges in both considered instances normally for all s ∈ C with Re(s) sufficiently
large and represents in the region of convergence a holomorphic function. The equations (5.15)
and (5.16) are valid for these s ∈ C and each integral on the left-hand side of these equations
is consequently a holomorphic function in s on the before mentioned region (in fact, they are
valid for all s where the right-hand side of (5.18) is defined).

The next Lemma is a variant of a Theorem which is due to Murase and Sugano (see [Ar],
Theorem 5.3). It connects the series B(χ, p−s) with the rational expression

1 + χ1(p)χ2(p)p−2s

(1− χ1(p2)p−2s)(1− χ2(p2)p−2s)

attached to an unramified character χ = (χ1, χ2) of Mp.
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Lemma 5.5. Let p be a prime, χ = (χ1, χ2) be an unramified character of Mp. Then

∫
Qp
〈νs+ 1

2
(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉〈φχ(g)|

S
N(Zp)
Lp

, ϕ(0)
p 〉dg

=

{
κp

1+χ1(p)χ2(p)p−2s

(1−χ1(p2)p−2s)(1−χ2(p2)p−2s)
, p||D|,

1+χ1(p)χ2(p)p−2s

(1−χ1(p2)p−2s)(1−χ2(p2)p−2s)
, p - |D|.

(5.18)

Proof. A similar formula for the group GL2(Qp) appears in [Mu2], p. 263. A proof for this
formula can be extracted from [Sh], Lemma 3.13. Since we work with the subgroup Qp, we
have to adjust the proof of this Lemma.

For the convenience of the reader, we repeat the relevant steps of the proof in [Sh] for the
more complicated case of p dividing |D|. We have∫

Qp
〈νs+ 1

2
(g)ϕ(0)

p , ϕ(0)
p 〉〈φχ(g)ϕ(0)

p , ϕ(0)
p 〉dg

=

∫
Qp/Kp

∫
Kp
〈νs+ 1

2
(gk)ϕ(0)

p , ϕ(0)
p 〉〈φχ(gk)ϕ(0)

p , ϕ(0)
p 〉dkdg

=

∫
Qp/Kp

∫
Kp
〈νs+ 1

2
(g)ωp(k)ϕ(0)

p , ϕ(0)
p 〉〈φχ(g)ωp(k)ϕ(0)

p , ϕ((0)
p 〉dk dg.

Exactly the same arguments leading to (5.12) are valid in the current situation. Consequently,
we may write for the latter above expression

κp

∫
Qp/Kp

〈νs+ 1
2
(g)ϕ(0)

p , ϕ(0)
p 〉〈φχ(g)ϕ(0)

p , ϕ((0)
p 〉dg

= κp

∫
Qp∩M2(Zp)/Kp

〈νs+ 1
2
(g)ϕ(0)

p , ϕ(0)
p 〉〈φχ(g)ϕ(0)

p , ϕ(0)
p 〉dg,

(5.19)

where the last equation results from the definition of νs. It can be checked that Lemma 3.12
of [Sh] applies to our situation. Thus, the last expression of (5.19) equals

κp
∑

(k,l)∈Λ

pkδ(m(pk, pl))
1
2χ(m(pk, pl))p−(s+ 1

2
)(k+l)

= κp
∑

(k,l)∈Λ

χ(m(pk, pl))p−s(k+l).

In order to include the condition k+ l ∈ 2N0, we split each of the sums over k and l into two
sums running over odd and even integers. The sum over Λ then becomes

κp

( ∞∑
k=0

∞∑
l=0

χ1(p)2kχ2(p)2lp−2ksp−2ls +

∞∑
m=0

∞∑
n=0

χ1(p)2m+1χ2(p)2n+1p−(2m+1)sp−(2n+1)s

)
= κp(1 + χ1(p)χ2(p)p−2s)[(1− χ1(p2)p−2s)(1− χ2(p2)p−2s)]−1.

�

Combining Lemma 5.5 with Lemma 5.4 immediately yields
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Theorem 5.6. Let χ = (χ1, χ2) be an unramified character of Mp,

BS(χ,X) =
∑

(k,l)∈Λ+

χ̂S(Tk,l)X
k+l and BS(χ,X) =

∑
(k,l)∈Λ+

χ̂S(Tk,l)X
k+l.

Then BS(χ, p−s) and BS(χ, p−s) can be written as a rational expression in χ1(p), χ2(p):

BS(χ, p−s) =
1 + χ1(p)χ2(p)p−2s

(1− χ1(p2)p−2s)(1− χ2(p2)p−2s)
,

BS(χ, p−s) =
1 + χ1(p)χ2(p)p−2s

(1− χ1(p2)p−2s)(1− χ2(p2)p−2s)
.

(5.20)

Now let F ∈ Aκ(ωf ) be a common eigenform of all operators T Tk,l , (k, l) ∈ Λ+, for all
primes p with eigenvalues λF,p(Tk,l). Then according to [St3], Remark 5.10, a C-algebra
homomorphism of H+(Qp//Kp, ωp) (and H(Qp//Kp, ωp) for (p, |D|) = 1) is defined for each
prime p via the eigenvalues λF,p. By Lemma 5.2, λF,p determines an unramified character

χF,p = (χ
(1)
F,p, χ

(2)
F,p) of Mp satisfying

λF,p(Tk,l) =

{∑
(r,s)∈Z2 S(〈Tk,l, ϕ

(0)
p 〉)(m(pr, ps))χF,p(m(pr, ps)), (p, |D|) = 1∑

(r,s)∈Z2〈S(Tk,l)(m(pr, ps)), ϕ
(0)
p 〉χF,p(m(pr, ps)), p | |D|

=

{
χ̂F,pS(Tk,l), (p, |D|) = 1

χ̂F,pS(Tk,l), p | |D|.

(5.21)

By virtue of Theorem 5.6 we have∑
(k,l)∈Λ+

λF,p(Tk,l)p
−s(k+l) =

∑
(k,l)∈Λ+

χ̂F,pS(Tk,l)p
−s(k+l)

=
1 + χ

(1)
F,p(p)χ

(2)
F,p(p)p

−2s

(1− χ(1)
F,p(p

2)p−2s)(1− χ(2)
F,p(p

2)p−2s)

if (p, |D|) = 1 and∑
(k,l)∈Λ+

λF,p(Tk,l)p
−s(k+l) =

∑
(k,l)∈Λ+

χ̂F,pS(Tk,l)p
−s(k+l)

=
1 + χ

(1)
F,p(p)χ

(2)
F,p(p)p

−2s

(1− χ(1)
F,p(p

2)p−2s)(1− χ(2)
F,p(p

2)p−2s)

if p | |D|. Following the classical literature (cf. [BM], Chap. 7.2, and [BoSP], Chap. I.§2),
these identities give rise to the definition of a standard L-function associated to F .

Definition 5.7. Let F ∈ Aκ(ωf ) be a common eigenform of all operators T Tk,l , (k, l) ∈ Λ+.
We define the standard L-function of F by

(5.22) L(s, F ) =
∏
p<∞

Lp(s, F )
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with

(5.23) Lp(s, F ) =
1 + χ

(1)
F,p(p)χ

(2)
F,p(p)p

−2s

(1− χ(1)
F,p(p

2)p−2s)(1− χ(2)
F,p(p

2)p−2s)

for all primes p. Let f ∈ Sκ(ρL) and Ff be the associated automorphic form. Based on [St3],
Remark 5.10, we then define the standard L-function of f by

(5.24) L(s, f) = L(s, F ).

5.2. Analytic properties of L(s, F ). In this section we study the analytic properties of
the L-function L(s, F ). It turns out that it can be continued meromorphically to the whole
s-plane.

5.2.1. Relation to the standard zeta-function Z(s, f). The subsequent exposition is essentially
due to Arakawa, [Ar], Theorem 5.5, tailored to our setting.

Let Tk,l be the operator in [St3], Corollary 4.7. or Theorem 4.11. Then
∑

(k,l)∈Λ+
Tk,lp

−s(k+l)

converges with respect to the standard norm induced by 〈·, ·〉 on SLp for all Re(s) > 1 and is
thus a well defined element in H+(Qp//Kp, ωp) (and H(Qp//Kp, ωp) for p coprime to |D|) and

T
∑

(k,l)∈Λ+
Tk,lp

−s(k+l)

also makes sense. Let F ∈ Aκ(ωf ) a common eigenform all operators

T Tk,l and fF the corresponding modular form in Sκ(ρL). Further, let

f
T

∑
(k,l)∈Λ+

Tk,lp
−s(k+l)

(F )
∈ Sκ(ρL)

be related to T
∑

(k,l)∈Λ+
Tk,lp

−s(k+l)

(F ) by A . We then have by [St3], Remark 5.7, ii),

T
∑

(k,l)∈Λ+
Tk,lp

−s(k+l)

=
∑

(k,l)∈Λ+

p−s(k+l)T Tk,l

and

A −1
(
T

∑
(k,l)∈Λ+

Tk,lp
−s(k+l)

(F )
)

=
∑

(k,l)∈Λ+

p−s(k+l)fT Tk,l (F )
.

Now, because of (5.21)

∑
(k,l)∈Λ+

p−s(k+l)T Tk,l(F ) =

 ∑
(k,l)∈Λ+

p−s(k+l)λF,p(Tk,l)

F

=


(∑

(k,l)∈Λ+
χ̂F,pS(Tk,l)p

−s(k+l)
)
F, (p, |D|) = 1(∑

(k,l)∈Λ+
χ̂F,pS(Tk,l)p

−s(k+l)
)
F, p | |D|

=

{
BS(χF,p, p

−s)F, (p, |D|) = 1

BS(χF,p, p
−s)F, p | |D|.

On the other hand, using [St3], (5.28), we find∑
(k,l)∈Λ+

p−s(k+l)fT Tk,l (F )
=

∑
(k,l)∈λ+

p−(s−κ/2+1)(k+l)T (m(p−k, p−l))(fF )

= Zp(s− κ/2 + 1, fF )fF
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since fF is an eigenform of all Hecke operators T (m(p−k, p−l)) by Remark 5.10 in [St3]. The
calculations before show∑

(k,l)∈Λ+

p−s(k+l)fT Tk,l (F )
= A −1

 ∑
(k,l)∈Λ+

p−s(k+l)T Tk,l(F )


=

{
BS(χF,p, p

−s)fF , (p, |D|) = 1

BS(χF,p, p
−s)fF , p | |D|.

It follows

Zp(s− κ/2 + 1, fF ) =

{
BS(χF,p, p

−s), (p, |D|) = 1

BS(χF,p, p
−s), p | |D|.

With the help of Theorem 5.6 we finally obtain

Theorem 5.8. Let D be an anisotropic discriminant form, f ∈ Sκ(ρL) be a common eigen-
form of all Hecke operators T (m(p−k, p−l)), (k, l) ∈ Λ+, and Ff ∈ Aκ(ωf ) the corresponding
automorphic form. Then

(5.25) Z(s− κ/2 + 1, f) = L(s, Ff ).

Theorem 5.9. Let κ ∈ 2Z, κ ≥ 3, satisfy 2κ+sig(L) ≡ 0 mod 4, D be an anisotropic discrim-
inant form and f ∈ Sκ(ρL) a common eigenform of all Hecke operators T (m(k2, 1), k ∈ N).
Then the standard L-function L(s, f) can be meromorphically continued to the whole s-plane.

Proof. The proof merely boils down to use Theorem 4.5 to establish the fact that Z(s, f) is
meromorphic on the whole s-plane and subsequently Theorem 5.8 to transfer the analytic
properties of Z(s− κ/2− 1, f) to L(s, Ff ). �
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