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1. Introducing Karel the Robot

Inthe 1970s, a Stanford graduate student named Rich Pattis decided that it would be eas-
ler to teach the fundamentals of programming if students could somehow learn the basic
ideas in a simple environment free from the complexities that characterize most program-
ming languages. Drawing inspiration from the success of Seymour Papert's LOGO project
at MIT, Rich designed an introductory programming environment in which students teach
a robot to solve simple problems. That robot was named Karel, after the Czech playwright
Karel Capek, whose 1923 play R.U.R. (Rossum's Universal Robots) gave the word robot to
the English language. Karel the Robot was quite a success. Karel was used in introductory
computer science courses all across the country, to the point that Rich's textbook sold well
over 100,000 copies. Many generations of CS106A students learned how programming
works by putting Karel through its paces.

But nothing lasts forever. In the middle of the 1990s, the simulator Stanford had been us-
ing for Karel the Robot stopped working. The people at the Stanford CS department were,
however, soon able to get a version of Karel up and running in the Thetis interpreter they
were using at the time. Stanford then proceeded to implement their own version of Karel
in Java and has been using this version in their introductory course since 2005.

The University of Applied Sciences in Regensburg (OTH Regensburg) is using the C lan-
guage in their introductory programming courses. Since there was no graphical C version
of Karel that could be integrated into an IDE, it was decided to implement Karel in C. The
original version was developed in summer 2016 by Christoph Markl and was subsequently
extended by various people.

This document describes an implementation of Karel for the C-programming language.
This implementation of Karel is designed to be compatible with both C and the Code-
Blocks programming environment, which means that students get to practice using the
CodeBlocks editor and debugger from the very beginning of the course.

Note: This handout borrows very heavily from the Java documentation for Karel, created
by Eric Roberts
(http://cs.stanford.edu/people/eroberts/karel-the-robot-learns-java.pdf)and
adapts the contents from Java to the C version of Karel.
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1.1. What is Karel?

Karelis a very simple robot living in a very simple world. By giving Karel a set of commands,
you can direct it to perform certain tasks within its world. The process of specifying those
commands is called programming. Initially, Karel understands only a very small number
of predefined commands, but an important part of the programming process is teaching
Karel new commands that extend its capabilities.

When you program Karel to perform a task, you must write out the necessary commands
in a very precise way so that the robot can correctly interpret what you have told it to do.
In particular, the programs you write must obey a set of syntactic rules that define what
commands and language forms are legal. Taken together, the predefined commands and
syntactic rules define the Karel programming language The Karel programming language
Is designed to be as similar as possible to C so as to ease the transition to the language
you will be using during the semester. Karel programs have much the same structure and
involve the same fundamental elements as C programs do. The critical difference is that
Karel's programming language is extremely small, in the sense that it has very few com-
mands and rules. It is easy, for example, to teach the entire Karel language in just a couple
of hours, which is precisely what we do in this course. At the end of that time, you will know
everything that Karel can do and how to specify those actions in a program. The details
are easy to master. Even so, you will discover that solving a problem can be extremely
challenging. Problem solving is the essence of programming; the rules are just a minor
concern along the way.

In sophisticated languages like C, there are so many details that learning these details often
becomes the focus of the course. When that happens, the much more critical issues of
problem solving tend to get lost in the shuffle. By starting with Karel, you can concentrate
on solving problems from the very beginning. And because Karel encourages imagination
and creativity, you can have quite a lot of fun along the way.

1.2. Karel's world

Karel's world is defined by streets running horizontally (east-west) and avenues running
vertically (north-south). The intersection of a street and an avenue is called a corner. Karel
can only be positioned on corners and must be facing one of the four standard compass
directions (north, south, east, west). A sample Karel world is shown below. Here Karel is
located at the corner of 1st Street and st Avenue, facing east.
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Several other components of Karel's world can be seen in this example. The object in front
of Karel is a beeper. As described in Rich Pattis's book, beepers are plastic cones which
emit a quiet beeping noise.” Karel can only detect a beeper if it is on the same corner. The
solid lines in the diagram are walls. Walls serve as barriers within Karel's world. Karel can-
not walk through walls and must instead go around them. Karel's world is always bounded
by walls along the edges, but the world may have different dimensions depending on the
specific problem Karel needs to solve.

1.3. What can Karel do?

When Karel is shipped from the factory, it responds to a very small set of commands:

Asks Karel to move forward one block. Karel cannot respond to a
move() command if there is a wall blocking its way.

turnLeft () Asks Karel to rotate 90 degrees to the left (counterclockwise).

Asks Karel to pick up one beeper from a corner and stores the beeper
in its beeper bag, which can hold an infinite number of beepers. Karel
cannot respond to a pickBeeper() command unless there is a beeper
on the current corner.

Asks Karel to take a beeper from its beeper bag and put it down on
putBeeper () | the current corner. Karel cannot respond to a putBeeper() command
unless there are beepers in its beeper bag.

move ()

pickBeeper ()

The empty pair of parentheses that appears in each of these commands is part of the
common syntax shared by Karel and Java and is used to specify the invocation of the
command. Eventually, the programs you write will include additional information in the
space between the parentheses, but such information is not part of the Karel's primitive
world. These parentheses will therefore be empty in standard Karel programs, but you
must remember to include them nonetheless.

It is also important to recognize that several of these commands place restrictions on
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Karel's activities. If Karel tries to do something illegal, such as moving through a wall or
picking up a nonexistent beeper, an error condition occurs. At this point, Karel displays an
error message and does not execute any remaining cormmands.

Karel's commands, however, cannot be executed on their own. Before Karel can respond
to any of these commands, you need to incorporate them into a Karel program.

1.4. The importance of practical experience

Programming is very much a learn-by-doing activity. As you will continually discover in your
study of computer science, reading about some programming concept is not the same
thing as using that concept in a program. Things that seem very clear on the page can be
difficult to put into practice.

Given the fact that writing programs on your own and getting them to run on the computer
are essential to learning about programming, it may seem surprising to discover that this
book does not include much discussion of the hands-on aspects of using Karel on your
computer. The reason for that omission is that the steps you need to run a Karel program
depend on the environment you're using. Running Karel programs on a Macintosh is some-
what different from running it under Windows. Even though the programming environment
you use has a great deal of influence on the nitty-gritty details you need to run programs,
it has no influence whatsoever on the general concepts. This book describes the general
concepts; the details pertinent to each platform will be distributed as handouts during the
course.

The fact that this book omits the practical details, however, should in no sense be in-
terpreted as minimizing their importance. If you want to understand how programming
works—even in an environment as simple as that provided by Karel—it is essential to ‘get
your hands dirty” and start using the computer. Doing so is by far the most effective intro-
duction into the world of programming and the excitement that it holds.
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2. Programming Karel

2.1. Hello World - Our first simple Karel program

A very simple Karel program is shown in Listing1. The program in ListingT is composed of
several parts. The first part consists of the following lines:

1 /*

2 * File: BeeperPickingKarel.c

3 K e e e e e e e e e e e e e e e e e e e e e e e e e ==

4 *

5 * This is a simple Karel program that defines a setup and a

6 * run function.

7 *

8 * The setup function loads Karel's world.

9 *

10 * The run function contains three commands.

11 * These commands cause Karel to move forward one step, pick up

12 * a beeper, and then move forward another step to the next
corner.

13 *

14 */

These lines are an example of a comment, which is simply text designed to explain the
operation of the program to human readers. Comments in both Karel and Java begin with
the characters /* and end with the characters */. Here, the comment begins on the first
line and ends several lines later. The stars on the individual lines that make up the text of
the comment are not required, but make it easier for human readers to see the extent of the
comment. In a simple program, extensive comments may seem silly because the effect
of the program is obvious, but they are extremely important as a means of documenting
the design of larger, more complex programs.

The second part of the program is the line

1 |#include "karel.h"

This line requests the inclusion of the karel library. This library contains the basic definitions
necessary for writing Karel programs, such as the definitions of the standard operations
move () and pickBeeper (). Because you always need access to these operations, every
Karel program you write will contain this include command before you write the actual

program.
Listing T: A very simple Karel program
1| /%
2 * File: BeeperPickingKarel.c
T
4| %
5 * This is a simple Karel program that defines a setup and a
6 * run function.
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7 *
8 * The setup function loads Karel's world.

9 *

10 * The run function contains three commands.

il * These commands cause Karel to move forward one step, pick up
12 * a beeper, and then move forward another step to the

13 * next corner.

14 *

15 */

177 #include "karel.h"

19 |void setup () {

20 loadWorld ("BeeperPicking");
2}

22

23 |void run() {

24 move () ;

25 pickBeeper () ;

2 move () ;

27 | }

The next part of the Karel program consists of the following lines:

1 |void setup () {
2 loadWorld ("BeeperPicking");
s}

These lines represent the definition of a new function, which specifies the sequence of
steps necessary to respond to a command. The function definition consists of two parts
that can be considered separately: The first line constitutes the function header and the
code between the curly braces is the function body. If you ignore the body for now, the
function definition looks like this:

void setup() {

body of the function definition

}

The first word in the function header, void, is part of C's syntactic structure, and you should
pretty much feel free to ignore it at this point. The next word on the header line specifies
the name of the new function, which in this case is the function setup. Whenever you start
a Karel program in Codeblocks, this function is called. The effect of calling the function
is defined by the body of the setup function, which is a sequence of commands that are
executed in order. The setup function contains only one command loadWorld which loads
a world and displays Karel within his world.

The final part of the Karel program consists of the run function:
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1 run() {

2 move () ;
pickBeeper () ;

4 move () ;

51}

The run function is the starting point for your Karel programs and contains all the com-
mands that your Karel program contains. These commands are, of course, also executed
in order. For example, the body of the run function for the BeeperPickingKarel program
IS

1 | move () ;
2 | pickBeeper ();
3 'move () ;

Thus, if the initial state of the world matches the example given in Chapter 1, Karel first
moves forward into the corner containing the beeper, picks up that beeper, and finally
moves forward to the corner just before the wall, as shown in the following before-and-
after diagram:

Before After
4 . 4
3 . 3
ol - . . . . . ol - . .
me [ IR
1 2 3 4 5 6 1 2 3 4 5 6

2.2. Solving a more interesting problem

The BeeperPickingKarel program defined in Listing 1 doesn't do very much as yet. Let's
try to make it a little more interesting. Suppose that the goal is not simply to get Karel to
pick up the beeper but to move the beeper from its initial position on 2nd Avenue and Tst
Street to the center of the ledge at 5th Avenue and 2nd Street. Thus, your next assignment
is to define a new Karel program that accomplishes the task illustrated in this diagram:

Before After

2 v . + + + + 2 . ; + " <> !
+ . ‘ + . . B B + .
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The first three commands in the new program—the ones that move forward, pick up the
beeper, and then move up to the ledge—are the same as before:

1 | move () ;
2 | pickBeeper () ;
5 |move () ;

From here, the next step is to turn left to begin climbing the ledge. That operation is easy,
because Karel has a turnLeft command in its standard repertoire. Executing a turnLeft
command at the end of the preceding sequence of commands leaves Karel facing north
on the corner of 3rd Avenue and st Street. If Karel then executes a move command, it will
move north to reach the following position:

From here, the next thing you need to do is get Karel to turn right so that it is again facing
east. While this operation is conceptually just as easy as getting Karel to turn left, there is
a slight problem: Karel's language includes a turnLeft command, but No turnRight com-
mand. It's as if you bought the economy model and have now discovered that it is missing
some important features.

At this point, you have your first opportunity to begin thinking like a programmer. You have
one set of commands, but not exactly the set you need. What can you do? Can you accom-
plish the effect of a turnRight command using only the capabilities you have? The answer,
of course, is yes. You can accomplish the effect of turning right by turning left three times.
After three left turns, Karel will be facing in the desired direction. From here, all you need
to do is program Karel to move over to the center of the ledge, drop the beeper and then
move forward to the final position. A complete implementation of a BeeperCarryingKarel
program that accomplishes the entire task is shown in Listing?2.

Listing 2: Program to carry a beeper to the top of a ledge

/ *
* File: BeeperCarryingKarel.c
B S

In this program, Karel picks up a beeper from 1st Street
and then carries that beeper to the center of a ledge
on 2nd Street.

-~ o g~ W N

* X X X *

10
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9 | */

11 |#include "karel.h"

13 O A

14 loadWorld ("BeeperPicking");
5 |}

16

7 run () A

18 move () ;

19 pickBeeper () ;
20 move () ;

21 turnlLeft () ;

2 move () ;

23 turnleft () ;

24 turnleft () ;
25 turnleft () ;

2 move () ;

27 move () ;

28 putBeeper () ;
29 move () ;

o |}

2.3. Defining new functions

Even though the BeeperCarryingKarel program in Listing2 demonstrates that it is possi-
ble to perform the turnRight operation using only Karel's built-in commands, the result-
ing program is not particularly clear conceptually. In your mental design of the program,
Karel turns right when it reaches the top of the ledge. The fact that you have to use three
turnLeft commands to do so is annoying. It would be much simpler if you could simply
say turnRight and have Karel understand this command. The resulting program would
not only be shorter and easier to write, but also significantly easier to read.

Fortunately, the Karel programming language makes it possible to define new commands
simply by including new function definitions. Whenever you have a sequence of Karel com-
mands that performs some useful task—such as turning right—you can define a new func-
tion that executes that sequence of commands. The format for defining a new Karel func-
tion has much the same as the definition of run in the preceding examples, which is a
function definition in its own right. A typical function definition looks like this:

void name() {
commands that make up the body of the function
}

In this pattern, name represents the name you have chosen for the new function. To com-
plete the definition, all you have to do is provide the sequence of commands in the lines

11
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between the curly braces. For example, you can define turnRight as follows:

void turnRight () {
turnlLeft () ;
turnleft () ;
turnlLeft () ;

AW N

5 }

Similarly, you could define a new turnAround function like this:

1 |void turnAround () {
2 turnLeft () ;

3 turnLeft () ;

4}

You can use the name of a new function just like any of Karel's built-in commands. For
example, once you have defined turnRight, you could replace the three turnLeft com-
mands in the BeeperCarryingKarel program with a single call to the turnRight function.
A revised implementation of the program that uses turnRight is shown in Listing3

Listing 3: Revised implementation of BeeperCarryingKarel that includes a turnRight
function

/ *
* File: BeeperCarryingKarelRevised.c

oA W N
*

In this program, Karel picks up a beeper from 1st Street
and then carries that beeper to the center of a ledge
on 2nd Street.

.
¥ X X X X *

1 |#include "karel.h"

13 [void setup () {

14 loadWorld ("BeeperPicking");
15 |}

16

7 | void run() {

18 move () ;

19 pickBeeper () ;
20 move () ;

2 turnLeft () ;

2 move () ;

23 turnRight () ;
24 move () ;

25 move () ;

2 putBeeper () ;
27 move () ;

s |}

12
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29

0 | /*

31 * Turns Karel 90 degrees to the right.
22 */

33 turnRight () {

34 turnlLeft () ;

35 turnlLeft () ;

36 turnlLeft () ;

7}

2.4. Decomposition

As a way of illustrating more of the power that comes with being able to define new func-
tions, it's useful to have Karel do something a little more practical than move a beeper from
one place to another. Streets often seem to be in need of repair, and it might be fun to see if
Karel can fill potholes in its abstract world. For example, imagine that Karel is standing on
the road shown in the left-hand figure, one corner to the left of a pothole in the road. Karel's
jobis to fill the hole with a beeper and proceed to the next corner. The diagram on the right
illustrates how the world should look after the program execution.

Before After

If you are limited to the four predefined commands, the run function to solve this problem
would look like this:

1 run () {
2 move () ;

3 turnlLeft () ;
4 turnlLeft () ;
5 turnLeft () ;
6 move () ;

7 putBeeper () ;
8 turnlLeft () ;
9 turnlLeft () ;
10 move () ;

1 turnLeft () ;
12 turnlLeft () ;
13 turnlLeft () ;
14 move () ;
5}

13
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You can, however, make the main program easier to read by creating and then making
use of the turnAround and turnRight functions. This version of the program appears in
Listing4

SRS NN N N R N

o

WO N N
> O W 3

c

Listing 4: Karel program to fill a single pothole

/%

* File: PotholeFillingKarel.c

The PotholeFillingKarel program puts a beeper into a pothole
on 2nd Avenue. This version of the program uses no
decomposition other than turnRight and turmnAround,

which are implemented in this program.

*

* ¥ X X *

#include "karel.h"

void setup() {
loadWorld ("PotholeFillingSimple");

}

void run() {
move () ;
turnRight () ;
move () ;
putBeeper () ;
turnAround () ;
move () ;
turnRight () ;
move () ;

}

/ *
* Turns Karel 90 degrees to the right.
*/
void turnRight () {
turnlLeft () ;
turnlLeft () ;
turnlLeft () ;
}

/ *
* Turns Karel 180 degrees around.
*/
void turmAround () {
turnleft () ;
turnLeft () ;
}

The initial motivation for defining the turnRight function was that it was cumbersome

14
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to keep repeating three turnLeft commands to accomplish a right turn. Defining new
functions has another important purpose beyond allowing you to avoid repeating the same
command sequences every time you want to perform a particular task. The power to define
functions unlocks the most important strategy in programming—the process of breaking
a large problem down into smaller pieces that are easier to solve. The process of breaking
a program down into smaller pieces is called decomposition, and the component parts of
alarge problem are called subproblems.

As an example, the problem of filling the hole in the roadway can be decomposed into the
following subproblems:

- Move up to the hole
- Fill the hole by dropping a beeper into it
+ Move on to the next corner

If you think about the problem in this way, you can use function definitions to create a
program that reflects your conception of the program structure. The run function would
look like this:

void run() {
move () ;
fillPothole () ;
move () ;

o s W N

3

The correspondence with the outline is immediately clear, and everything would be great if
only you could get Karel to understand what you mean by fillPothole. Given the power
to define functions, implementing £illPothole IS extremely simple. All you have to do is
define a £illPothole function whose body consists of the commands you have already
written to do the job, like this:

void fillPothole () {
turnRight () ;
move () ;
putBeeper () ;
turnAround () ;
move () ;
turnRight () ;

~ o g W N

s |}

The complete program is shown in Listing5

Listing 5: Program to fill a single pothole using a £i11Pothole function for decomposition
]/ |

| * File: PotholeFillingKarelDecomposition.c \
K o o e e e e e ‘

2
4‘ * The PotholeFillingKarel program puts a beeper into a pothole
5‘ * on 2nd Avenue. This version of the program decomposes

15
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* the problem so that it makes use of a fillPothole function.

*/
#include "karel.h"

void setup() {
loadWorld ("PotholeFillingSimple");

}
void run() {
move () ;
fillPothole () ;
move () ;
b
/%
* Fills the pothole beneath Karel's current position by
* placing a beeper on that corner. For this function to
* work correctly, Karel must be facing east immediately
* above the pothole. When execution is complete, Karel
* will have returned to the same square and will again

* be facing east.

*/

void fillPothole () {
turnRight () ;
move () ;
putBeeper () ;
turnAround () ;
move () ;
turnRight () ;

}

/ *
* Turns Karel 90 degrees to the right.
*/
void turnRight () {
turnleft () ;
turnleft () ;
turnleft () ;
}

/ *
* Turns Karel 180 degrees around.
*/
void turnAround () A
turnlLeft () ;
turnleft () ;

16
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2.5. Choosing the correct decomposition

There are, however, other decomposition strategies you might have tried. For example, you
could have written the program as

1 run () {
2 approachAndFillPothole () ;
move () ;

4 1}

where the approachAndFillPothole function is simply

1 approachAndFillPothole () {
. move () ;
3 turnRight () ;
4 move () ;
5 putBeeper () ;
6 turnAround () ;
move () ;
8 turnRight () ;
o}

Alternatively, you might have written the program as

run() A
move () ;
turnRight () ;
move () ;
5 fillPotholeYouAreStandingIn () ;
6 turnAround () ;
7 move () ;
turnRight () ;
move () ;

Now N

s}

[te}

0 |}

where the body of fillPotholeYouAreStandingIn CONSists oOf a single putBeeper cOM-
mand. Each of these programs represents a possible decomposition. Each program cor-
rectly solves the problem. Given that all three versions of this program work, what makes
one choice of breaking up the problem better than another?

In general, deciding how to decompose a program is not easy. In fact, as the problems
become more complex, choosing an appropriate decomposition will turn out to be one of
the more difficult aspects of programming. You can, however, rely to some extent on the

following guidelines:

1. Each subproblem should perform a conceptually simple task. The solution of a sub-
problem may require many commands and may be quite complex in terms of its
internal operation. Even so, it should end up accomplishing some conceptual task
that is itself easy to describe. A good indication of whether you have succeeded in
identifying a reasonable task comes from the name you give to the function. If you

17
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can accurately define its effect with a simple descriptive name, you have probably
chosen a good decomposition. On the other hand, if you end up with complex names
such as approachAndFillPothole, the decomposition does not seem as promising.

2. Each subproblem should perform a task that is as general as possible, so that it can
be used in several different situations. If one decomposition results in a program that
is only useful in the exact situation at hand and another would work equally well in a
variety of related situations, you should probably choose the more general one.

3. Control statements in Karel

The technigue of defining new functions, as useful as it is, does not actually enable Karel to
solve any new problems. Because each function name is merely a shorthand for a specific
set of commands, it is always possible to expand a program written as a series of function
calls into a single main program that accomplishes the same task, although the resulting
program is likely to be long and difficult to read. The commands, no matter whether they
are written as a single program or broken down into a set of functions, are still executed in
a fixed order that does not depend on the state of Karel's world. Before you can solve more
interesting problems, you need to discover how to write programs in which this strictly lin-
ear, step-by-step order of operations does not apply. In particular, you need to learn several
new features of the Karel programming language that make it possible for Karel to examine
its world and change its execution pattern accordingly.

Statements that affect the order in which a program executes commands are called con-
trol statements. Control statements generally fall into the following two classes:

1. Conditional statements. Conditional statements specify that certain statements in a
program should be executed only if a particular condition holds. In Karel, you specify
conditional execution using an if statement.

2. lterative statements. Iterative statements specify that certain statements in a pro-
gram should be executed repeatedly, forming what programmers call a loop. Karel
supports two different iterative statements: a for statement that is useful when you
want to repeat a set of commands a predetermined number of times and a while
statement that is useful when you want to repeat an operation as long as some con-
dition holds.

This chapter introduces each of these control statement forms in the context of Karel prob-
lems that illustrate the need for each statement type.

3.1. Conditional statements

To get a sense of where conditional statements might come in handy, let's go back to the
fillPothole program presented at the end of the previous chapter. Before filling the pot-
holeinthe fillPothole function, there are a few conditions that Karel might want to check.
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For example, Karel might want to check to see if some other repair crew has already filled
the hole, which means that there is already a beeper on that corner. If so, Karel does not
need to put down a second one. To represent such checks in the context of a program,
you need to use the if statement, which ordinarily appears in the following form:

if (conditional test) {
statements to be executed only if the condition Is true
}

The conditional test shown in the first line of this pattern must be replaced by one of the
tests Karel can perform on its environment. The result of that conditional test is either true
or false. If the test is true, Karel executes the statements enclosed in braces; if the test is
false, Karel does nothing.

The tests that Karel can perform are listed in Table 1. Note that each test includes an
empty set of parentheses, which is used as a syntactic marker in Karel's programming
language to show that the test is being applied. Note also that every condition in the list has
a corresponding opposite. For example, you can use the frontIsClear condition to check
whether the path ahead of Karel is clear or the frontIsBlocked condition to see if there is
a wall blocking the way. The frontIsClear condition is true whenever frontIsBlocked IS
false and vice versa. Choosing the right condition to use in a program requires you to think
about the logic of the problem and see which condition is easiest to apply.

Table 1: Conditions that Karel can test

Test Opposite What it checks

frontIsClear () frontIsBlocked() Is there a wall in front of Karel?
leftIsClear () leftIsBlocked() Is there a wall to Karel's left?
rightIsClear() rightIsBlocked() Is there a wall to Karel's right?

beepersPresent () | noBeepersPresent () | Are there beepers on this corner”
beepersInBag() noBeepersInBag() Any there beepers in Karel's bag?

facingNorth() notFacingNorth() ls Karel facing north?
facingFast () notFacingEast () s Karel facing east?

facingSouth() notFacingSouth() Is Karel facing south?
facingWest () notFacingWest () s Karel facing west?

You can use the if statement to modify the definition of the £i11Pothole function so that
Karel puts down a beeper only if there is not already a beeper on that corner. To do so,
the conditional test you need is noBeepersPresent. | there are no beepers present on the
corner, Karel should put down a new one. If there is already a beeper there, Karel should do
nothing. The new definition of £i11Pothole, which checks to make sure that there is not
already a beeper in the hole, looks like this:

] fillPothole () {
2 turnRight () ;
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move () ;
(noBeepersPresent ()) {
putBeeper () ;

[S2 ]

}

7 turnAround () ;
move () ;
turnRight () ;

o

s}

te}

0 |}

The if statement in this example illustrates several features commmon to all control state-
ments in Karel. The control statement begins with a header, which indicates the type of
control statement along with any additional information to control the program flow. In this
case, the header is

if (noBeepersPresent())

which shows that the statements enclosed within the braces should be executed only if
the noBeepersPresent test is true. The statements enclosed in braces represent the body
of the control statement.

By convention, the body of any control statement is indented with respect to the state-
ments that surround it. The indentation makes it much easier to see exactly which state-
ments will be affected by the control statement. Such indentation is particularly important
when the body of a control statement contains other control statements. For example, you
might want to make an additional test to see whether Karel had any beepers before trying
to put one down. To do so, all you would need to do is add a new if statement inside the
existing one, like this:

1 (noBeepersPresent ()) {
2 (beepersInBag()) {

3 putBeeper () ;

4 }

5}

In this example, the putBeeper command is executed only if there is no beeper on the cor-
ner and there are beepers in Karel's bag. Control statements that occur inside other control
statements are said to be nested.

The outcome of a decision in a program is not always a matter of whether to do nothing
or perform some set of operations. In some cases, you need to choose between two alter-
native courses of action. For these cases, the if statement in Karel has an extended form
that looks like this:

if (conditional test) {
statements to be executed only if the condition is true

} else {
statements to be executed if the condition is false) {

}
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This form of the if statement is illustrated by the function invertBeeperState, which
picks up a beeper if there is one and puts down a beeper if the corner is empty.

invertBeeperState () {
(beepersPresent ()) A
pickBeeper ();
} {
putBeeper () ;

o~ W N

6 }
7}

3.2. Iterative statements

In solving Karel problems, you will often find that repetition is a necessary part of your so-
lution. If you were really going to program a robot to fill potholes, it would hardly be worth-
while to have it fill just one. The value of having a robot perform such a task comes from
the fact that the robot could repeatedly execute its program to fill one pothole after another.

To see how repetition can be used in the context of a programming problem, consider the
following stylized roadway in which the potholes are evenly spaced along 1st Street at every
even-numbered avenue:

3 + + + + + + + + + +

2 @ + + + + + + + + + +

1 + + + + + + + + + +

1 2 3 4 5 6 7 8 9 10 11

Your mission is to write a program that instructs Karel to fill all the holes in this road. Note
that the road reaches a dead end after 11th Avenue, which means that you have exactly
five holes to fill.

Since you know from this example that there are exactly five holes to fill, the control state-
ment that you need is a for statement, which specifies that you want to repeat some oper-
ation a predetermined number of times. The structure of the for statement appears com-
plicated primarily because it is actually much more powerful than anything Karel needs.
The only version of the for syntax that Karel uses is

int i;

for (i=0; i < count; i++) {
Statements to be repeated

}
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where count is an integer indicating the number of repetitions. For example, if you want
to change the £il1lPothole program so that it solves the more complex problem of filling
five evenly-spaced holes, all you have to do is change the run function as follows:

run() {
5 ( i=0; i < 5; i++) {
3 move () ;
4 fillPothole ();
5 move () ;
6 }
7}

The for statement is useful only when you know in advance the number of repetitions
you need to perform. In most applications, the number of repetitions is controlled by the
specific nature of the problem. For example, it seems unlikely that a pothole-filling robot
could always count on there being exactly five potholes. It would be much better if Karel
could continue to fill holes until it encountered some condition that caused it to stop, such
as reaching the end of the street. Such a program would be more general in its application
and would work correctly in either of the following worlds as well as any other world in
which the potholes were evenly spaced exactly two corners apart:

To write a general program that works with any of these worlds, you need to use a while
statement. In Karel, a while statement has the following general form:

while (test) {
Statements to be repeated
}

The test in the header line is chosen from the set of conditions listed in Table 1 earlier in
this chapter. In this case, Karel needs to check whether the path in front is clear by invoking
the condition frontIsClear. If you use the frontIsClear conditionin a while loop, Karel
will repeatedly execute the loop until it hits a wall. The while statement therefore makes it
possible to solve the more general problem of repairing a roadway, as long as the potholes
appear at every even-numbered corner and the end of the roadway is marked by a wall.
The RoadRepairKarel program that accomplishes this task is shown in Listingb

Listing 6: Program to fill regularly spaced potholes in a roadway
1| /%
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* File: RoadRepairKarel.c

*

The RoadRepairKarel program fills a series of regularly
spaced potholes until Karel reaches the end of the roadway.

*

*
*/
#include "karel.h"
void setup() {
loadWorld ("PotholeFillingRoad") ;

}

void run() {
while (frontIsClear()) {

move () ;
fillPothole () ;
move () ;
X
X
/ *
* Fills the hole beneath Karel's current position by
* placing a beeper in the hole. For this function to
* work correctly, Karel must be facing east immediately
* above the hole. When execution is complete, Karel
* will have returned to the same square and will again
* be facing east. This version of fillPothole checks to
* see 1f there is already a beeper present before putting
* a new one down.
*/

void fillPothole () {
turnRight () ;
move () ;
if (noBeepersPresent (D)) {
putBeeper () ;

}
turnAround () ;
move () ;
turnRight () ;
}
/ *
* Turns Karel 90 degrees to the right.
*/

void turnRight () {
turnlLeft () ;
turnleft () ;
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51 turnleft () ;

s2 |}

53

54 |/ *

55 * Turns Karel 180 degrees around.
56 */

57 |void turmAround () {

58 turnlLeft () ;

59 turnlLeft () ;

60 |}

3.3. Solving general problems

So far, the various pothole-filling programs have not been very realistic, because they rely
on specific conditions, such as evenly spaced potholes, that are unlikely to be true in the
real world. If you want to write a more general program to fill potholes, it should be able to
work with fewer constraints. In particular,

1. The program should be able to work with roads of arbitrary length. It does not make
sense to design a program that works only for roads with a predetermined number of
corners. Instead, you want to make the same program work for roads of any length.
Such programs, however, do need to know when they have come to the end of the
road, so it makes sense to require that the end of the roadway is marked by a wall.

2. The potholes may occur at any position in the roadway. There should be no limits on
the number of potholes or any restrictions on their spacing. A pothole is identified
simply by an opening in the wall representing the road surface.

3. Existing potholes may already have been repaired. Any of the potholes may already
contain a beeper left by a previous repair crew. In such cases, Karel should not put
down an additional beeper.

To change the program so that it solves this more general problem requires you to think
about the overall strategy in a different way. Instead of having the loop in the main program
cycle through each pothole, you need to have it check each corner as it goes. If there is an
opening at that corner, Karel needs to try and fill the pothole. If there is a wall, Karel can
simply move ahead to the next corner.

This strategic analysis suggests that the solution to the general problem may require noth-
ing more than making the following change to the run function from Listing6:

1|/ *

2 * CAUTION THIS FUNCTION CONTAINS A BUG
3 | *x/

4 |void run() {

5 while (frontIsClear ()) {

6 if (rightIsClear ()) {

7 fillPothole () ;
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8
9 move () ;
10 T

1|}

However, as the comment in the code sample suggests, this program is not quite right. It
contains a logical flaw, the sort of error that programmers call a bug. On the other hand,
the particular bug in this example is relatively subtle and would be easy to miss, even if you
tested the program. For example, the program works correctly on the following world, as
shown in the following before-and-after diagrams:

Before After
4 4
3 3 A
2 E] . . . . . . 2 - . . . E]
1d‘|<>“,¢ 1*O|<> R
i 2 3 4 5 6 7 1 2 3 4 5 6 7

From this example, things look pretty good. If you ended your testing here, however, you
would never notice that the program fails if you change the world so that there is a pothole
on /th Avenue. In this case, the before-and-after pictures look like this:

Before After

(o) Y [ )
LTl 11| [ Jelel Te|
2 3

4 5 6 7

1 2 3 4 5 6 7 1

Karel stops without filling the last pothole. In fact, if you watch the execution carefully, Karel
never even goes down into that last pothole to check whether it needs filling. What's the
problem here?

If you follow through the logic of the program carefully, you'll discover that the bug lies in
the loop within the run function, which looks like this:

] run() {
(frontIsClear ()) {

(rightIsClear ()) {
4 fillPothole () ;

2

5 }
6 move () ;
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}

7

8‘}

As soon as Karel finishes filling the pothole on 6th Avenue, it executes the move com-
mand and returns to the top of the while loop. At that point, Karel is standing at the cor-
ner of 7th Avenue and 2nd street, where it is blocked by the boundary wall. Because the
frontIsClear test now fails, the while loop exits without checking the last segment of the
roadway.

The bug in this program is an example of a programming problem called a fencepost (or
off-by-one) error. The name comes from the fact that it takes one more fence post that
you might think to fence off a particular distance. How many fence posts, for example, do
you need to build a 100-foot fence if the posts are always positioned 10 feet apart? The
answer is 11, as illustrated by the following diagram:

100 feet, 11 fenceposts

The situation in Karel's world has much the same structure. In order to fill potholes in a
street that is seven corners long, Karel has to check for seven potholes but only has to
move six times. Because Karel starts and finishes at an end of the roadway, it needs to
execute one fewer move command than the number of corners it has to check.

Once you discover it, fixing this bug is actually quite easy. Before Karel stops at the end of
the roadway, all that the program has to do is make a special check for a pothole at the
final intersection, as shown in the program in Listing 7.

Listing 7: Program to fill irregularly spaced potholes

/ *

* File: RoadRepairKarelGeneral.c

This version of the RoadRepairKarel program fills an
arbitrary sequence of potholes in a roadway.

[S2 I O SR N
* ¥ *

*/
o |#include "karel.h"
12 |void setup () {

13 loadWorld("PotholeFillingRoadUneven") ;
4|

16 |void run() {
7 while (frontIsClear ()) {
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checkForPothole () ;
move () ;

}

checkForPothole () ;

* Checks for a pothole immediately beneath Karel's current
* looking for a wall to the right. If a pothole exists,
* Karel calls fillPothole to repair it.
*/
void checkForPothole () {
if (rightIsClear ()) {
fillPothole () ;
3

~ Y

* X X X X X X X

Fills the pothole beneath Karel's current position by
placing a beeper on that cormer. For this function to
work correctly, Karel must be facing east immediately
above the pothole. When execution is complete, Karel
will have returned to the same square and will again

be facing east. This version of fillPothole checks to
see 1f there is already a beeper present before putting
a new one down.

*

*/
void fillPothole () {
turnRight () ;
move () ;
if (noBeepersPresent ()) {
putBeeper () ;

}
turnAround () ;
move () ;
turnRight () ;
}
/ *
* Turns Karel 90 degrees to the right.
*/

void turnRight () {
turnlLeft () ;
turnleft () ;
turnlLeft () ;

}

/ *

* Turns Karel 180 degrees around.

*/
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67 turnAround () {
68 turnlLeft () ;

69 turnlLeft () ;

0o}

4. Stepwise refinement

To a large extent, programming is the science of solving problems by computer. Because
problems are often difficult, solutions, and the programs that implement those solutions,
can be difficult as well. In order to make it easier for you to develop those solutions, you
need to adopt a methodology and discipline that reduces the level of that complexity to a
manageable scale.

In the early years of programming, the concept of computing as a science was more or
less an experiment in wishful thinking. No one knew much about programming in those
days, and few thought of it as an engineering discipline in the conventional sense. As pro-
gramming matured, however, such a discipline began to emerge. The cornerstone of that
discipline is the understanding that programming is done in a social environment in which
programmers must work together. If you go into industry, you will almost certainly be one
of many programmers working to develop a large program. That program, moreover, is al-
most certain to live on and require maintenance beyond its originally intended application.
Someone will want the program to include some new feature or work in some different
way. When that occurs, a new team of programmers must go in and make the necessary
changes in the programs. If programs are written in an individual style with little or no com-
monality, getting everyone to work together productively is extremely difficult.

To combat this problem, programmers began to develop a set of programming method-
ologies that are collectively called software engineering. Using good software engineering
skills not only makes it easier for other programmers to read and understand your pro-
grams, but also makes it easier for you to write those programs in the first place. One of
the most important methodological advances to come out of software engineering is the
strategy of top-down design or stepwise refinement, which consists of solving problems
by starting with the problem as a whole. You break the whole problem down into pieces,
and then solve each piece, breaking those down further if necessary:.

4.1. An exercise in stepwise refinement

To illustrate the concept of stepwise refinement, let's teach Karel to solve a new problem.
Imagine that Karel is now living in a world that looks something like this:
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On each of the avenues, there is a tower of beepers of an unknown height, although some
avenues (such as 1st, 7th, and 9th in the sample world) may be empty. Karel's job is to
collect all the beepers in each of these towers, put them back down on the easternmost
corner of Ist Street, and then return to its starting position. Thus, when Karel finishes its
work in the example above, all 21 beepers currently in the towers should be stacked on the
corner of 9th Avenue and 1st Street, as follows:

The key to solving this problem is to decompose the program in the right way. This task
Is more complex than the others you have seen, which makes choosing appropriate sub-
problems more important to obtaining a successful solution.
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4.2. The principle of top-down design

The key idea in stepwise refinement is that you should start the design of your program
from the top, which refers to the level of the program that is conceptually highest and most
abstract. At this level, the beeper tower problem is clearly divided into three independent
phases. First, Karel has to collect all the beepers. Second, Karel has to deposit them on
the last intersection. Third, Karel has to return to its home position. This conceptual de-
composition of the problem suggests that the run function for this program will have the
following structure:

run() {
collectAllBeepers ();
dropAllBeepers () ;
returnHome () ;

3

s W N

At this level, the problem is easy to understand. Of course, there are a few details left over
in the form of functions that you have not yet written. Even so, it is important to look at
each level of the decomposition and convince yourself that, as long as you believe that the
functions you are about to write will solve the subproblems correctly, you will then have a
solution to the problem as a whole.

4.3. Refining the first subproblem

Now that you have defined the structure for the program as a whole, it is time to move
on to the first subproblem, which consists of collecting all the beepers. This task is itself
more complicated than the simple problems from the preceding chapters. Collecting all
the beepers means that you have to pick up the beepers in every tower until you get to the
final corner. The fact that you need to repeat an operation for each tower suggests that
you need a while loop here.

But what does this while loop look like? First of all, you should think about the condi-
tional test. You want Karel to stop when it hits the wall at the end of the row. Thus, you
want Karel to keep going as long as the space in front is clear. Thus, you know that the
collectAllBeepers function will include a while loop that uses the frontIsClear test.
At each position, you want Karel to collect all the beepers in the tower beginning on that
corner. If you give that operation a name, which might be something like collectOneTower,
you can go ahead and write a definition for the collectAllBeepers function even though
you haven' yet filled in the details.

You do, however, have to be careful. The code for collectAllBeepers does not look like this:

1| /*
* CAUTION THIS FUNCTION CONTAINS A BUG
x/

collectAllBeepers {
(frontIsClear ()) {

o o AW N
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7 collectOneTower () ;

8 move () ;
9 }
0 |}

This implementation is buggy for exactly the same reason that the first version of the gen-
eral RoadRepairKarel from the previous chapter failed to do its job. There is a fencepost
error (or off-by one bug) in this version of the code, because Karel needs to test for the
presence of a beeper tower on the last avenue. The correct implementation is

1| /%

2| * CAUTION THIS FUNCTION CONTAINS A BUG
3 x/

4 collectAllBeepers {

5 (frontIsClear ()) {

6 collectOneTower () ;

7 move () ;

}

collectOneTower () ;

O 0~

0 |}

1

Note that this function has precisely the same structure as the main program from the
RoadRepairKarel program presented at the end of the last chapter. The only difference is
that this program calls collectOneTower Where the other called checkForPothole. These
two programs are each examples of a general strategy that looks like this:

while (frontIsClear()) {
Perform some operation.
move () ;
}
Perform the same operation for the final corner.

You can use this strategy whenever you need to perform an operation on every corner as
you move along a path that ends at a wall. If you remember the general structure of this
strategy, you can use it whenever you encounter a problem that requires such an operation.
Reusable strategies of this sort come up frequently in programming and are referred to as
programming idioms or patterns. The more patterns you know, the easier it will be for you
to find one that fits a particular type of problem.

4.4. Coding the next level

Even though the code for the collectAllBeepers function is itself complete, you cant
actually execute the program until you solve the collectOneTower subproblem. When
collectOneTower IS called, Karel is either standing at the base of a tower of beepers or
standing on an empty corner. In the former case, you need to collect the beepers in the
tower. In the latter, you can simply move on. This situation sounds like an application for
the if statement, in which you would write something like this:
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1 (beepersPresent ()) {
2 collectActualTower () ;

}

Before you add such a statement to the code, you should think about whether you need to
make this test. Often, programs can be made much simpler by observing that cases that
at first seem to be special can be treated in precisely the same way as the more general
situation. In the current problem, what happens if you decide that there is a tower of beep-
ers on every avenue but that some of those towers are zero beepers high? Making use of
this insight simplifies the program because you no longer have to test whether there is a
tower on a particular avenue.

The collectOneTower functionis still complex enough that an additional level of decompo-
sitionisinorder. To collect all the beepers in a tower, Karel needs to undertake the following
steps:

1. Turn left to face the beepers in the tower.

2. Collect all the beepers in the tower, stopping when no more beepers are found.
3. Turn around to face back toward the bottorm of the world.

4. Return to the wall that represents the ground.

5 Turn left to be ready to move to the next corner.

Once again, this outline provides a model for the collectOneTower function, which looks
like this:

collectOneTower () {
turnlLeft () ;
collectLineOfBeepers();
turnAround () ;
moveToWall () ;
turnlLeft () ;

-~ o AW N

4.5. Preconditions and postconditions

The turnLeft commands at the beginning and end of the collectOneTower function are
both critical to the correctness of this program. When collectOneTower is called, Karel
s always somewhere on st Street facing east. When it completes its operation, the pro-
gram as a whole will work correctly only if Karel is again facing east at that same corner.
Conditions that must be true before a function is called are referred to as preconditions;
conditions that must apply after the function finishes are known as postconditions.

When you define a function, you will get into far less trouble if you write down exactly
what the pre- and postconditions are. Once you have done so, you then need to make
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sure that the code you write always leaves the postconditions satisfied, assuming that
the preconditions were satisfied to begin with. For example, think about what happens
if you call collectOneTower When Karel is on Tst Street facing east. The first turnLeft
command leaves Karel facing north, which means that Karel is properly aligned with the
column of beepers representing the tower. The collectLine0fBeepers function, has yet
to be written but nonetheless performs a task that you understand conceptually, sim-
ply moves without turning. Thus, at the end of the call to collectLineOfBeepers, Karel
will still be facing north. The turnAround call therefore leaves Karel facing south. Like
collectLineOfBeepers, the moveToWall function does not involve any turns but instead
simply moves until it hits the boundary wall. Because Karel is facing south, this boundary
wall will be the one at the bottom of the screen, just below T1st Street. The final turnLeft
command therefore leaves Karel on 1st Street facing east, which satisfies the postcondi-
tion.

4.6. Finishing up

Although the hard work has been done, there are still several loose ends that need to
be resolved. The main program calls two functions, dropAllBeepers and returnHome,
that are as yet unwritten. Similarly, collectOneTower Calls collectLineOfBeepers and
moveToWall. Fortunately, all four of these functions are simple enough to code without any
further decomposition, particularly if you use moveToWall in the definition of returnHome.
The complete implementation appears in Listing8.

Listing 8: Program to solve the collect towers of beepers

1|/

2 * File: BeeperCollectingKarel.c

3 g

4 * The BeeperCollectingKarel program collects all the beepers
5 * in a series of vertical towers and deposits them at the

6 * rightmost corner on 1st Street.

7 *

8 x/

10 | #include "karel.h"

13 |void setup() {
14 loadWorld ("BeeperCollection");
5}

7 void run() {
18 collectAllBeepers () ;

19 dropAllBeepers () ;
20 returnHome () ;
AN

2

23 | /*
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Collects the beepers from every tower by moving along 1st
Street, calling collectOneTower at every corner. The
postcondition for this function is that Karel is in the
* easternmost corner of 1st Street facing east.
*/
void collectAllBeepers () {
while (frontIsClear()) {
collectOneTower () ;
move () ;

* ¥ ¥

}

collectOneTower () ;

* Collects the beepers in a single tower. When collectOneTower
* is called, Karel must be on 1st Street facing east. The
* postcondition for collectOneTower is that Karel must again
* be facing east on that same corner.
*/
void collectOneTower () {
turnleft () ;
collectLineOfBeepers () ;
turnAround () ;
moveToWall() ;
turnlLeft () ;
}
/ *
* Collects a consecutive line of beepers. The end of the
* beeper line is indicated by a corner that contains
* no beepers.
*/
void collectLineOfBeepers () {
while (beepersPresent()) {
pickBeeper () ;
if (frontIsClear ()) {

move () ;
by
b
}
/ *
* Drops all the beepers on the current cormner.
*/

void dropAllBeepers () {
while (beepersInBag()) {
putBeeper () ;
}
}
/%

* Returns Karel to its initial position at the corner of 1st
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Avenue and 1st Street, facing east. The precondition for
this function is that Karel must be facing east
somewhere on 1st Street, which is true at the conclusion
76 * of collectAllBeepers.

77 */

78 | void returnHome () {

79 turnAround () ;

80 moveToWall () ;

81 turnAround () ;

2 1}

*
74 *
*

84 | /*

85 * Moves Karel forward until it is blocked by a wall.
g | */

g7 |void moveToWall() A

98 while (frontIsClear ()) {
89 move () ;

90 }

o1 | }

9

93 | /%

94 * Turns Karel 90 degrees to the right.
95 */

9% |void turnRight () {

97 turnLeft () ;

98 turnleft () ;

99 turnleft () ;

00 |}

101

102 | /*

103 * Turns Karel 180 degrees around.
104 */

105 ' void turmAround () {

106 turnlLeft () ;

107 turnLeft () ;

08 |}

4.7. Algorithms

Although top-down design is a critical strategy for programming, it cannot be applied me-
chanically without thinking about problem-solving strategies. Figuring out how to solve a
particular problem by computer generally requires considerable creativity. The process of
designing a solution strategy is traditionally called algorithmic design.

The word algorithm comes from the name of a ninth-century Persian mathematician, Abu
Jafar Mohammed ibn MUsa al-Khowarizmi, who wrote an influential treatise on mathe-
matics. Today, the notion of an algorithm has been formalized so that it refers to a solution
strategy that meets the following conditions:
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- The strategy is expressed in a form that is clear and unambiguous.
- The steps in the strategy can be carried out.
- The strategy always terminates after a finite number of steps.

You will learn much more about algorithms as you continue your study of programming,
but it is useful to look at a few simple algorithms in Karel's world.

4.8. Solving a maze

As an example of algorithmic design, suppose that you wanted to teach Karel to escape
from a maze. In Karel's world, a maze might look like this:

The exit to the maze is marked by a beeper, so that Karel's job is to navigate the corridors
of the maze until it finds the beeper indicating the exit. The program, however, must be
general enough to solve any maze, and not just the one pictured here.

There are several strategies you could use for solving such a maze. When Theseus needed
to escape from the Labyrinth of Crete, he adopted—at the suggestion of King Minos's
daughter Ariadne, whom Theseus promptly abandoned on the next island he reached—the
strategy of unwinding a ball of string as he explored the maze. You could devise a similar
strategy for Karel, in which beepers serve the same function.

For most mazes, however, you can use a simpler strategy called the right-hand rule, in
which you begin by putting your right hand on the adjacent wall and then go through the
maze without ever taking your hand off the wall. Another way to express this strategy is to
proceed through the maze one step at a time, always taking the rightmost available path.
You can easily write a Karel program to apply the right-hand rule. The program in Listing
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9, for example, expresses the algorithm for the right-hand rule in a particularly compact
form. You should work through the logic of this algorithm and convince yourself that it
indeed accomplishes the task. It is important to note that the code that implements an
algorithm may not be very complicated. Indeed, coming up with the right algorithm often
leads to extremely simple code.

oA W N

Listing 9: Program to solve a maze

VEX:

* File: MazeRunningKarel.c

* In this program, Karel can solve a maze
* using the right-hand rule.
*

*/

#include "karel.h"

void setup() {
loadWorld ("Maze");
}

void run() {
while (noBeepersPresent()) {
turnRight () ;
while (frontIsBlocked()) {
turnleft () ;

¥
move () ;
X
}
/%
* Turns Karel 90 degrees to the right.
*/

void turnRight () {
turnlLeft () ;
turnlLeft () ;
turnleft () ;

}

VE:
* Turns Karel 180 degrees around.
*/
void turmAround () {
turnlLeft () ;
turnLeft () ;
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4.9. Doubling the number of beepers

Another programming task that leads to interesting algorithmic choices is the problem of
getting Karelto double the number of beepers on a corner. For example, suppose that Karel
starts out in the world

1 @ + + +
1 2 3

where there are some number of beepers, in this case four, on the corner of Ist Street
and 2nd Avenue and an infinite number of beepers in Karel's beeper bag. The goal in this
problem is to write a function doubleBeepers that doubles the number of beepers on the
current square. Thus, if you execute the function

run () A{
2 move () ;
3 doubleBeepers () ;
4 move () ;

}

on the world shown in the preceding diagram, the final state of the world should look like
this:

1 + + +
2 3 4 5

The program should be general enough to work for any number of beepers. For example,
if there had originally been 21 beepers on the corner of 1st Street and 2nd Avenue, the pro-
gram should end with 42 beepers on that corner.

Writing the doubleBeepers function is harder than it initially appears. Your first step is to
devise an algorithmic strategy to solve the problem. Because Karel has an infinite number
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of beepers in his bag, you cant start by picking up all the beepers on the corner, because
you would then have no way of telling how many beepers to put down. As with most algo-
rithms in Karel's world, you need to process the beepers one at a time. You can pick one
up from the corner, but you then have to keep track somehow of the fact that you have to
add two beepers to the result.

The easiest strategy to devise involves the use of a temporary storehouse on some corner
that is initially empty, such as the corner at Ist Street and 3rd Avenue. If every time you
pick up a beeper from the original pile on 2nd Avenue you put down two beepers in the
storehouse on 3rd Avenue, you will have twice the original number of beepers when the
first pile is exhausted. Thus, you can create the correct value in the storehouse by calling
the following function:

void doubleIntoStorehouse () {
while (beepersPresent()) {

pickBeeper () ;
move () ;
putBeeper () ;
putBeeper () ;
turnAround () ;

8 move () ;

9 turnAround () ;

10 }

1}

-~ o o~ W N

The precondition for this function is that Karel is standing on a corner containing a pile of
N beepers facing a corner with no beepers. The postcondition is that Karel winds up in
its original position with no beepers on that corner but 2N beepers on the corner Karel is
facing.

This function does the interesting algorithmic work, but does not entirely satisfy the con-
straints of the problem as stated because the final pile of beepers is not on the original
square. To get it there, you need to implement a similar function that simply transfers the
pile back to the adjacent square. This function has almost exactly the same structure, ex-
cept that it deposits only one beeper for each one it collects. If you design a
transferBeepersBack function to work with the same precondition as that used for
doubleIntoStorehouse, it will look like this:

void transferBeepersBack () {
while (beepersPresent()) {
pickBeeper () ;
move () ;
putBeeper () ;
turnAround () ;
move () ;
turnAround () ;

-~ o o~ N

[es)

39



- OSTBAYERISCHE
J | -_ TECHNISCHE HOCHSCHULE
REGENSBURG

|\/I INFORMATIK UND
| MATHEMATIK

The doubleBeepers function itself then consists of the following code:

doubleBeepers () {
doubleIntoStorehouse () ;

3 move () ;

4 turnAround () ;

5 transferBeepersBack () ;
6 move () ;

7 turnAround () ;

g |}

This strategy, however, is not the only one you might use. In many cases, there are algo-
rithms that work much better than the obvious ones, although they are often difficult to dis-
cover. Many such algorithms depend on sophisticated programming techniques that you
will encounter later in your study of computer science. For example, the doubleBeepers
problem can be solved quite easily if you use a technique called recursion, which is simply
the process of having a function call itself. The following implementation of doubleBeepers
gets the job done without needing a storehouse or any moving around:

doubleBeepers () {

(beepersPresent ()) {
pickBeeper () ;
doubleBeepers () ;
putBeeper () ;
putBeeper () ;

- o AW N

}
I

Although it is fun to try and figure out what this program is doing, you shouldn't worry at
this point if you find it hard to understand. The point of showing this solution is simply to
demonstrate that there are many different algorithms for solving problems, some of which
can be very compact and efficient. As you study computer science, you will learn a great
deal more about algorithmic techniques and gain the skills you need to write this type of
program on your own.

5. Some more things Karel can do

5.1. Logical operations

As you write more sophisticated Karel programs, you will discover that it is sometimes dif-
ficult to express certain conditional tests whose English equivalents include conjunctions
like and and or. As an example, try to write a Karel while statement that moves Karel for-
ward until it is either blocked by a wall or encounters a beeper. To make it easier to write
interesting programs, the Karel language allows you to use the following logical operators,
which are actually part of C and not something, which is limited to Karel:
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&& Equivalent to the English word and.
|l Equivalent to the English word or (in the formal sense of either or both).
! Equivalent to the English word not.

With these operators, it is easy to write the while statement suggested earlier in this sec-
tion, because you can combine the conditions into a single test:

1 |while (frontIsClear () && noBeepersPresent ()) {
2 move () ;

}

The fact that these operators work in Karel programs reveals a notable fact about the way
such programs are implemented. The Karel programs that you write turn out to be sim-
ply C programs in disguise. There is no separate Karel language; everything that you've
seen in Karelis actually just part of standard C or implemented using standard C as part of
one of the functions in the karel.h library. While this strategy makes the Karel simulator
much easier to implement and means that you will be using the same tools that you will
use throughout the semester, it does have a downside. The logical operators &&, |1, and
! are not the only pieces of standard C that you might incorporate into a Karel program.
Given the way Karel is implemented, you could include anything from standard C in a Karel
program, and the C compiler would not complain at all. Doing so, however, defeats the pur-
pose of Karel, which is intended to provide a simple platform for learning programming. So
even though the C compiler won't complain if you use more advanced C structures, your
professor will.

Acceptable Karel programs must limit themselves to the features described in this book.

41



- OSTBAYERISCHE
J | -_ TECHNISCHE HOCHSCHULE
REGENSBURG

|\/I INFORMATIK UND
| MATHEMATIK

A. Karel Reference Card

This appendix defines the structure of the Karel programming language on a single page.
Karel program structure:

1| /R

2 * Comments may be included anywhere in the program between a
3 * slash-star and the corresponding star-slash characters.

4 */

include "karel.h";

7 O A

8 loadWorld ("nameOfWorld"); /* Filename of Karel's world */
o}

10

1 run () {

12 /* statements in the body of the function */

E

14 | /* definitions of your own functions */

Built-in Karel commands Karel condition names
move(); turnLeft(), putBeeper(); frontIsClear()  frontIsBlocked()
pickBeeper(); leftIsClear()  leftIsBlocked()

rightIsClear()  rightIsBlocked()
beepersPresent()  noBeepersPresent ()
beepersInBag() noBeepersInBag()
facingNorth() notFacingNorth()
facingEast() notFacingEast()
facingSouth() notFacingSouth()
facingWest() notFacingWest()

Iterative statements:
int i;
for (i=0; i < count; i++) {
Statements to be repeated
}
while (fest) {
statements to be repeated

Conditional statements:
if (conditional test) {
statements to be executed only if the

¥ condition is true
}
if (conditional test) {
Function definitions: statements to be executed only if the
void name() { condition is true
commands that make up the body of } else {
the function statements to be executed if the con-
} dition is false) {
}
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