
Karel the Robot learns C

Markus Heckner
OTH Regensburg

Faculty of Computer Science and Mathematics

This handout is based on the original Karel the robot learns Java by Eric Roberts fromStanford University(http://cs.stanford.edu/people/eroberts/karel-the-robot-learns-java.pdf).Concept, content and graphics were borrowed from this original version, but adapted tothe specifics of the C programming language where required.

September 22, 2016

http://cs.stanford.edu/people/eroberts/karel-the-robot-learns-java.pdf

Contents

1. Introducing Karel the Robot 31.1. What is Karel? . 41.2. Karel’s world . 41.3. What can Karel do? . 51.4. The importance of practical experience . 6
2. Programming Karel 72.1. Hello World - Our first simple Karel program 72.2. Solving a more interesting problem . 92.3. Defining new functions . 112.4. Decomposition . 132.5. Choosing the correct decomposition . 17
3. Control statements in Karel 183.1. Conditional statements . 183.2. Iterative statements . 213.3. Solving general problems . 24
4. Stepwise refinement 284.1. An exercise in stepwise refinement . 284.2. The principle of top-down design . 304.3. Refining the first subproblem . 304.4. Coding the next level . 314.5. Preconditions and postconditions . 324.6. Finishing up . 334.7. Algorithms . 354.8. Solving a maze . 364.9. Doubling the number of beepers . 38
5. Some more things Karel can do 405.1. Logical operations . 40
A. Karel Reference Card 42

2

1. Introducing Karel the Robot

In the 1970s, a Stanford graduate student named Rich Pattis decided that it would be eas-ier to teach the fundamentals of programming if students could somehow learn the basicideas in a simple environment free from the complexities that characterize most program-ming languages. Drawing inspiration from the success of Seymour Papert’s LOGO projectat MIT, Rich designed an introductory programming environment in which students teacha robot to solve simple problems. That robot was named Karel, after the Czech playwrightKarel Capek, whose 1923 play R.U.R. (Rossum’s Universal Robots) gave the word robot tothe English language. Karel the Robot was quite a success. Karel was used in introductorycomputer science courses all across the country, to the point that Rich’s textbook sold wellover 100,000 copies. Many generations of CS106A students learned how programmingworks by putting Karel through its paces.
But nothing lasts forever. In the middle of the 1990s, the simulator Stanford had been us-ing for Karel the Robot stopped working. The people at the Stanford CS department were,however, soon able to get a version of Karel up and running in the Thetis interpreter theywere using at the time. Stanford then proceeded to implement their own version of Karelin Java and has been using this version in their introductory course since 2005.
The University of Applied Sciences in Regensburg (OTH Regensburg) is using the C lan-guage in their introductory programming courses. Since there was no graphical C versionof Karel that could be integrated into an IDE, it was decided to implement Karel in C. Theoriginal version was developed in summer 2016 by Christoph Märkl and was subsequentlyextended by various people.
This document describes an implementation of Karel for the C-programming language.This implementation of Karel is designed to be compatible with both C and the Code-Blocks programming environment, which means that students get to practice using theCodeBlocks editor and debugger from the very beginning of the course.
Note: This handout borrows very heavily from the Java documentation for Karel, createdby Eric Roberts(http://cs.stanford.edu/people/eroberts/karel-the-robot-learns-java.pdf) andadapts the contents from Java to the C version of Karel.

3

http://cs.stanford.edu/people/eroberts/karel-the-robot-learns-java.pdf

1.1. What is Karel?
Karel is a very simple robot living in a very simple world. By giving Karel a set of commands,you can direct it to perform certain tasks within its world. The process of specifying thosecommands is called programming. Initially, Karel understands only a very small numberof predefined commands, but an important part of the programming process is teachingKarel new commands that extend its capabilities.
When you program Karel to perform a task, you must write out the necessary commandsin a very precise way so that the robot can correctly interpret what you have told it to do.In particular, the programs you write must obey a set of syntactic rules that define whatcommands and language forms are legal. Taken together, the predefined commands andsyntactic rules define the Karel programming language. The Karel programming languageis designed to be as similar as possible to C so as to ease the transition to the languageyou will be using during the semester. Karel programs have much the same structure andinvolve the same fundamental elements as C programs do. The critical difference is thatKarel’s programming language is extremely small, in the sense that it has very few com-mands and rules. It is easy, for example, to teach the entire Karel language in just a coupleof hours, which is precisely what we do in this course. At the end of that time, you will knoweverything that Karel can do and how to specify those actions in a program. The detailsare easy to master. Even so, you will discover that solving a problem can be extremelychallenging. Problem solving is the essence of programming; the rules are just a minorconcern along the way.
In sophisticated languages like C, there are somany details that learning these details oftenbecomes the focus of the course. When that happens, the much more critical issues ofproblem solving tend to get lost in the shuffle. By starting with Karel, you can concentrateon solving problems from the very beginning. And because Karel encourages imaginationand creativity, you can have quite a lot of fun along the way.

1.2. Karel’s world
Karel’s world is defined by streets running horizontally (east-west) and avenues runningvertically (north-south). The intersection of a street and an avenue is called a corner. Karelcan only be positioned on corners and must be facing one of the four standard compassdirections (north, south, east, west). A sample Karel world is shown below. Here Karel islocated at the corner of 1st Street and 1st Avenue, facing east.

4

Several other components of Karel’s world can be seen in this example. The object in frontof Karel is a beeper. As described in Rich Pattis’s book, beepers are plastic cones whichemit a quiet beeping noise.” Karel can only detect a beeper if it is on the same corner. Thesolid lines in the diagram are walls. Walls serve as barriers within Karel’s world. Karel can-not walk through walls andmust instead go around them. Karel’s world is always boundedby walls along the edges, but the world may have different dimensions depending on thespecific problem Karel needs to solve.

1.3. What can Karel do?
When Karel is shipped from the factory, it responds to a very small set of commands:
move()

Asks Karel to move forward one block. Karel cannot respond to amove() command if there is a wall blocking its way.
turnLeft() Asks Karel to rotate 90 degrees to the left (counterclockwise).
pickBeeper()

Asks Karel to pick up one beeper from a corner and stores the beeperin its beeper bag, which can hold an infinite number of beepers. Karelcannot respond to a pickBeeper() command unless there is a beeperon the current corner.
putBeeper()

Asks Karel to take a beeper from its beeper bag and put it down onthe current corner. Karel cannot respond to a putBeeper() commandunless there are beepers in its beeper bag.
The empty pair of parentheses that appears in each of these commands is part of thecommon syntax shared by Karel and Java and is used to specify the invocation of thecommand. Eventually, the programs you write will include additional information in thespace between the parentheses, but such information is not part of the Karel’s primitiveworld. These parentheses will therefore be empty in standard Karel programs, but youmust remember to include them nonetheless.
It is also important to recognize that several of these commands place restrictions on

5

Karel’s activities. If Karel tries to do something illegal, such as moving through a wall orpicking up a nonexistent beeper, an error condition occurs. At this point, Karel displays anerror message and does not execute any remaining commands.
Karel’s commands, however, cannot be executed on their own. Before Karel can respondto any of these commands, you need to incorporate them into a Karel program.

1.4. The importance of practical experience
Programming is verymuch a learn-by-doing activity. As youwill continually discover in yourstudy of computer science, reading about some programming concept is not the samething as using that concept in a program. Things that seem very clear on the page can bedifficult to put into practice.
Given the fact that writing programs on your own and getting them to run on the computerare essential to learning about programming, it may seem surprising to discover that thisbook does not include much discussion of the hands-on aspects of using Karel on yourcomputer. The reason for that omission is that the steps you need to run a Karel programdepend on the environment you’re using. Running Karel programs on aMacintosh is some-what different from running it underWindows. Even though the programming environmentyou use has a great deal of influence on the nitty-gritty details you need to run programs,it has no influence whatsoever on the general concepts. This book describes the generalconcepts; the details pertinent to each platform will be distributed as handouts during thecourse.
The fact that this book omits the practical details, however, should in no sense be in-terpreted as minimizing their importance. If you want to understand how programmingworks—even in an environment as simple as that provided by Karel—it is essential to “getyour hands dirty” and start using the computer. Doing so is by far the most effective intro-duction into the world of programming and the excitement that it holds.

6

2. Programming Karel

2.1. Hello World - Our first simple Karel program
A very simple Karel program is shown in Listing1. The program in Listing1 is composed ofseveral parts. The first part consists of the following lines:
1 /*
2 * File: BeeperPickingKarel.c
3 * ---
4 *
5 * This is a simple Karel program that defines a setup and a
6 * run function.
7 *
8 * The setup function loads Karel 's world.
9 *

10 * The run function contains three commands.
11 * These commands cause Karel to move forward one step , pick up
12 * a beeper , and then move forward another step to the next

corner.
13 *
14 */

These lines are an example of a comment, which is simply text designed to explain theoperation of the program to human readers. Comments in both Karel and Java begin withthe characters /* and end with the characters */. Here, the comment begins on the firstline and ends several lines later. The stars on the individual lines that make up the text ofthe comment are not required, butmake it easier for human readers to see the extent of thecomment. In a simple program, extensive comments may seem silly because the effectof the program is obvious, but they are extremely important as a means of documentingthe design of larger, more complex programs.
The second part of the program is the line
1 #include "karel.h"

This line requests the inclusion of the karel library. This library contains the basic definitionsnecessary for writing Karel programs, such as the definitions of the standard operations
move() and pickBeeper(). Because you always need access to these operations, everyKarel program you write will contain this include command before you write the actualprogram.

Listing 1: A very simple Karel program
1 /*
2 * File: BeeperPickingKarel.c
3 * ---
4 *
5 * This is a simple Karel program that defines a setup and a
6 * run function.

7

7 *
8 * The setup function loads Karel 's world.
9 *

10 * The run function contains three commands.
11 * These commands cause Karel to move forward one step , pick up
12 * a beeper , and then move forward another step to the
13 * next corner.
14 *
15 */
16
17 #include "karel.h"
18
19 void setup() {
20 loadWorld("BeeperPicking");
21 }
22
23 void run() {
24 move();
25 pickBeeper ();
26 move();
27 }

The next part of the Karel program consists of the following lines:
1 void setup() {
2 loadWorld("BeeperPicking");
3 }

These lines represent the definition of a new function, which specifies the sequence ofsteps necessary to respond to a command. The function definition consists of two partsthat can be considered separately: The first line constitutes the function header and thecode between the curly braces is the function body. If you ignore the body for now, thefunction definition looks like this:
void setup() {

body of the function definition

}

The first word in the function header, void, is part of C’s syntactic structure, and you shouldpretty much feel free to ignore it at this point. The next word on the header line specifiesthe name of the new function, which in this case is the function setup. Whenever you starta Karel program in Codeblocks, this function is called. The effect of calling the functionis defined by the body of the setup function, which is a sequence of commands that areexecuted in order. The setup function contains only one command loadWorldwhich loadsa world and displays Karel within his world.
The final part of the Karel program consists of the run function:

8

1 void run() {
2 move();
3 pickBeeper ();
4 move();
5 }

The run function is the starting point for your Karel programs and contains all the com-mands that your Karel program contains. These commands are, of course, also executedin order. For example, the body of the run function for the BeeperPickingKarel programis
1 move();
2 pickBeeper ();
3 move();

Thus, if the initial state of the world matches the example given in Chapter 1, Karel firstmoves forward into the corner containing the beeper, picks up that beeper, and finallymoves forward to the corner just before the wall, as shown in the following before-and-after diagram:

2.2. Solving a more interesting problem
The BeeperPickingKarel program defined in Listing 1 doesn’t do very much as yet. Let’stry to make it a little more interesting. Suppose that the goal is not simply to get Karel topick up the beeper but to move the beeper from its initial position on 2nd Avenue and 1stStreet to the center of the ledge at 5th Avenue and 2nd Street. Thus, your next assignmentis to define a new Karel program that accomplishes the task illustrated in this diagram:

9

The first three commands in the new program—the ones that move forward, pick up thebeeper, and then move up to the ledge—are the same as before:
1 move();
2 pickBeeper ();
3 move();

From here, the next step is to turn left to begin climbing the ledge. That operation is easy,because Karel has a turnLeft command in its standard repertoire. Executing a turnLeftcommand at the end of the preceding sequence of commands leaves Karel facing northon the corner of 3rd Avenue and 1st Street. If Karel then executes a move command, it willmove north to reach the following position:

From here, the next thing you need to do is get Karel to turn right so that it is again facingeast. While this operation is conceptually just as easy as getting Karel to turn left, there isa slight problem: Karel’s language includes a turnLeft command, but no turnRight com-mand. It’s as if you bought the economymodel and have now discovered that it is missingsome important features.
At this point, you have your first opportunity to begin thinking like a programmer. You haveone set of commands, but not exactly the set you need. What can you do? Can you accom-plish the effect of a turnRight command using only the capabilities you have? The answer,of course, is yes. You can accomplish the effect of turning right by turning left three times.After three left turns, Karel will be facing in the desired direction. From here, all you needto do is program Karel to move over to the center of the ledge, drop the beeper and thenmove forward to the final position. A complete implementation of a BeeperCarryingKarelprogram that accomplishes the entire task is shown in Listing2.

Listing 2: Program to carry a beeper to the top of a ledge
1 /*
2 * File: BeeperCarryingKarel.c
3 * ---
4 *
5 * In this program , Karel picks up a beeper from 1st Street
6 * and then carries that beeper to the center of a ledge
7 * on 2nd Street.
8 *

10

9 */
10
11 #include "karel.h"
12
13 void setup() {
14 loadWorld("BeeperPicking");
15 }
16
17 void run() {
18 move();
19 pickBeeper ();
20 move();
21 turnLeft ();
22 move();
23 turnLeft ();
24 turnLeft ();
25 turnLeft ();
26 move();
27 move();
28 putBeeper ();
29 move();
30 }

2.3. Defining new functions
Even though the BeeperCarryingKarel program in Listing2 demonstrates that it is possi-ble to perform the turnRight operation using only Karel’s built-in commands, the result-ing program is not particularly clear conceptually. In your mental design of the program,Karel turns right when it reaches the top of the ledge. The fact that you have to use three
turnLeft commands to do so is annoying. It would be much simpler if you could simplysay turnRight and have Karel understand this command. The resulting program wouldnot only be shorter and easier to write, but also significantly easier to read.
Fortunately, the Karel programming language makes it possible to define new commandssimply by including new function definitions. Whenever you have a sequence of Karel com-mands that performs some useful task—such as turning right—you can define a new func-tion that executes that sequence of commands. The format for defining a new Karel func-tion has much the same as the definition of run in the preceding examples, which is afunction definition in its own right. A typical function definition looks like this:
void name() {

commands that make up the body of the function
}

In this pattern, name represents the name you have chosen for the new function. To com-plete the definition, all you have to do is provide the sequence of commands in the lines

11

between the curly braces. For example, you can define turnRight as follows:
1 void turnRight () {
2 turnLeft ();
3 turnLeft ();
4 turnLeft ();
5 }

Similarly, you could define a new turnAround function like this:
1 void turnAround () {
2 turnLeft ();
3 turnLeft ();
4 }

You can use the name of a new function just like any of Karel’s built-in commands. Forexample, once you have defined turnRight, you could replace the three turnLeft com-mands in the BeeperCarryingKarel programwith a single call to the turnRight function.A revised implementation of the program that uses turnRight is shown in Listing3
Listing 3: Revised implementation of BeeperCarryingKarel that includes a turnRightfunction
1 /*
2 * File: BeeperCarryingKarelRevised.c
3 * ---
4 *
5 * In this program , Karel picks up a beeper from 1st Street
6 * and then carries that beeper to the center of a ledge
7 * on 2nd Street.
8 *
9 */

10
11 #include "karel.h"
12
13 void setup() {
14 loadWorld("BeeperPicking");
15 }
16
17 void run() {
18 move();
19 pickBeeper ();
20 move();
21 turnLeft ();
22 move();
23 turnRight ();
24 move();
25 move();
26 putBeeper ();
27 move();
28 }

12

29
30 /*
31 * Turns Karel 90 degrees to the right.
32 */
33 void turnRight () {
34 turnLeft ();
35 turnLeft ();
36 turnLeft ();
37 }

2.4. Decomposition
As a way of illustrating more of the power that comes with being able to define new func-tions, it’s useful to have Karel do something a little more practical thanmove a beeper fromone place to another. Streets often seem to be in need of repair, and it might be fun to see ifKarel can fill potholes in its abstract world. For example, imagine that Karel is standing onthe road shown in the left-hand figure, one corner to the left of a pothole in the road. Karel’sjob is to fill the hole with a beeper and proceed to the next corner. The diagram on the rightillustrates how the world should look after the program execution.

If you are limited to the four predefined commands, the run function to solve this problemwould look like this:
1 void run() {
2 move();
3 turnLeft ();
4 turnLeft ();
5 turnLeft ();
6 move();
7 putBeeper ();
8 turnLeft ();
9 turnLeft ();

10 move();
11 turnLeft ();
12 turnLeft ();
13 turnLeft ();
14 move();
15 }

13

You can, however, make the main program easier to read by creating and then makinguse of the turnAround and turnRight functions. This version of the program appears inListing4
Listing 4: Karel program to fill a single pothole

1 /*
2 * File: PotholeFillingKarel.c
3 * ------------------------------
4 * The PotholeFillingKarel program puts a beeper into a pothole
5 * on 2nd Avenue. This version of the program uses no
6 * decomposition other than turnRight and turnAround ,
7 * which are implemented in this program.
8 */
9

10 #include "karel.h"
11
12 void setup() {
13 loadWorld("PotholeFillingSimple");
14 }
15
16 void run() {
17 move();
18 turnRight ();
19 move();
20 putBeeper ();
21 turnAround ();
22 move();
23 turnRight ();
24 move();
25 }
26
27 /*
28 * Turns Karel 90 degrees to the right.
29 */
30 void turnRight () {
31 turnLeft ();
32 turnLeft ();
33 turnLeft ();
34 }
35
36 /*
37 * Turns Karel 180 degrees around.
38 */
39 void turnAround () {
40 turnLeft ();
41 turnLeft ();
42 }

The initial motivation for defining the turnRight function was that it was cumbersome

14

to keep repeating three turnLeft commands to accomplish a right turn. Defining newfunctions has another important purpose beyond allowing you to avoid repeating the samecommandsequences every time youwant to performaparticular task. The power to definefunctions unlocks the most important strategy in programming—the process of breakinga large problem down into smaller pieces that are easier to solve. The process of breakinga program down into smaller pieces is called decomposition, and the component parts ofa large problem are called subproblems.As an example, the problem of filling the hole in the roadway can be decomposed into thefollowing subproblems:
• Move up to the hole
• Fill the hole by dropping a beeper into it
• Move on to the next corner

If you think about the problem in this way, you can use function definitions to create aprogram that reflects your conception of the program structure. The run function wouldlook like this:
1 void run() {
2 move();
3 fillPothole ();
4 move();
5 }

The correspondence with the outline is immediately clear, and everything would be great ifonly you could get Karel to understand what you mean by fillPothole. Given the powerto define functions, implementing fillPothole is extremely simple. All you have to do isdefine a fillPothole function whose body consists of the commands you have alreadywritten to do the job, like this:
1 void fillPothole () {
2 turnRight ();
3 move();
4 putBeeper ();
5 turnAround ();
6 move();
7 turnRight ();
8 }

The complete program is shown in Listing5
Listing 5: Program to fill a single pothole using a fillPothole function for decomposition
1 /*
2 * File: PotholeFillingKarelDecomposition.c
3 * ------------------------------
4 * The PotholeFillingKarel program puts a beeper into a pothole
5 * on 2nd Avenue. This version of the program decomposes

15

6 * the problem so that it makes use of a fillPothole function.
7 */
8
9 #include "karel.h"

10
11 void setup() {
12 loadWorld("PotholeFillingSimple");
13 }
14
15 void run() {
16 move();
17 fillPothole ();
18 move();
19 }
20
21 /*
22 * Fills the pothole beneath Karel 's current position by
23 * placing a beeper on that corner. For this function to
24 * work correctly , Karel must be facing east immediately
25 * above the pothole. When execution is complete , Karel
26 * will have returned to the same square and will again
27 * be facing east.
28 */
29 void fillPothole () {
30 turnRight ();
31 move();
32 putBeeper ();
33 turnAround ();
34 move();
35 turnRight ();
36 }
37
38 /*
39 * Turns Karel 90 degrees to the right.
40 */
41 void turnRight () {
42 turnLeft ();
43 turnLeft ();
44 turnLeft ();
45 }
46
47 /*
48 * Turns Karel 180 degrees around.
49 */
50 void turnAround () {
51 turnLeft ();
52 turnLeft ();
53 }

16

2.5. Choosing the correct decomposition
There are, however, other decomposition strategies youmight have tried. For example, youcould have written the program as
1 void run() {
2 approachAndFillPothole ();
3 move();
4 }

where the approachAndFillPothole function is simply
1 void approachAndFillPothole () {
2 move();
3 turnRight ();
4 move();
5 putBeeper ();
6 turnAround ();
7 move();
8 turnRight ();
9 }

Alternatively, you might have written the program as
1 void run() {
2 move();
3 turnRight ();
4 move();
5 fillPotholeYouAreStandingIn ();
6 turnAround ();
7 move();
8 turnRight ();
9 move();

10 }

where the body of fillPotholeYouAreStandingIn consists of a single putBeeper com-mand. Each of these programs represents a possible decomposition. Each program cor-rectly solves the problem. Given that all three versions of this program work, what makesone choice of breaking up the problem better than another?
In general, deciding how to decompose a program is not easy. In fact, as the problemsbecome more complex, choosing an appropriate decomposition will turn out to be one ofthe more difficult aspects of programming. You can, however, rely to some extent on thefollowing guidelines:

1. Each subproblem should perform a conceptually simple task. The solution of a sub-problem may require many commands and may be quite complex in terms of itsinternal operation. Even so, it should end up accomplishing some conceptual taskthat is itself easy to describe. A good indication of whether you have succeeded inidentifying a reasonable task comes from the name you give to the function. If you

17

can accurately define its effect with a simple descriptive name, you have probablychosen a good decomposition. On the other hand, if you end upwith complex namessuch as approachAndFillPothole, the decomposition does not seem as promising.
2. Each subproblem should perform a task that is as general as possible, so that it can

be used in several different situations. If one decomposition results in a program thatis only useful in the exact situation at hand and another would work equally well in avariety of related situations, you should probably choose the more general one.

3. Control statements in Karel

The technique of defining new functions, as useful as it is, does not actually enable Karel tosolve any new problems. Because each function name is merely a shorthand for a specificset of commands, it is always possible to expand a programwritten as a series of functioncalls into a single main program that accomplishes the same task, although the resultingprogram is likely to be long and difficult to read. The commands, no matter whether theyare written as a single program or broken down into a set of functions, are still executed ina fixed order that does not depend on the state of Karel’s world. Before you can solve moreinteresting problems, you need to discover how to write programs in which this strictly lin-ear, step-by-step order of operations does not apply. In particular, you need to learn severalnew features of the Karel programming language thatmake it possible for Karel to examineits world and change its execution pattern accordingly.Statements that affect the order in which a program executes commands are called con-
trol statements. Control statements generally fall into the following two classes:

1. Conditional statements. Conditional statements specify that certain statements in aprogram should be executed only if a particular condition holds. In Karel, you specifyconditional execution using an if statement.
2. Iterative statements. Iterative statements specify that certain statements in a pro-gram should be executed repeatedly, forming what programmers call a loop. Karelsupports two different iterative statements: a for statement that is useful when youwant to repeat a set of commands a predetermined number of times and a whilestatement that is useful when you want to repeat an operation as long as some con-dition holds.

This chapter introduces each of these control statement forms in the context of Karel prob-lems that illustrate the need for each statement type.

3.1. Conditional statements
To get a sense of where conditional statements might come in handy, let’s go back to the
fillPothole program presented at the end of the previous chapter. Before filling the pot-hole in the fillPothole function, there are a few conditions that Karelmightwant to check.

18

For example, Karel might want to check to see if some other repair crew has already filledthe hole, which means that there is already a beeper on that corner. If so, Karel does notneed to put down a second one. To represent such checks in the context of a program,you need to use the if statement, which ordinarily appears in the following form:
if (conditional test) {

statements to be executed only if the condition is true
}

The conditional test shown in the first line of this pattern must be replaced by one of thetests Karel can perform on its environment. The result of that conditional test is either trueor false. If the test is true, Karel executes the statements enclosed in braces; if the test isfalse, Karel does nothing.
The tests that Karel can perform are listed in Table 1. Note that each test includes anempty set of parentheses, which is used as a syntactic marker in Karel’s programminglanguage to show that the test is being applied. Note also that every condition in the list hasa corresponding opposite. For example, you can use the frontIsClear condition to checkwhether the path ahead of Karel is clear or the frontIsBlocked condition to see if there isa wall blocking the way. The frontIsClear condition is true whenever frontIsBlocked isfalse and vice versa. Choosing the right condition to use in a program requires you to thinkabout the logic of the problem and see which condition is easiest to apply.

Table 1: Conditions that Karel can test
Test Opposite What it checks
frontIsClear() frontIsBlocked() Is there a wall in front of Karel?
leftIsClear() leftIsBlocked() Is there a wall to Karel’s left?
rightIsClear() rightIsBlocked() Is there a wall to Karel’s right?
beepersPresent() noBeepersPresent() Are there beepers on this corner?
beepersInBag() noBeepersInBag() Any there beepers in Karel’s bag?
facingNorth() notFacingNorth() Is Karel facing north?
facingEast() notFacingEast() Is Karel facing east?
facingSouth() notFacingSouth() Is Karel facing south?
facingWest() notFacingWest() Is Karel facing west?

You can use the if statement to modify the definition of the fillPothole function so thatKarel puts down a beeper only if there is not already a beeper on that corner. To do so,the conditional test you need is noBeepersPresent. If there are no beepers present on thecorner, Karel should put down a new one. If there is already a beeper there, Karel should donothing. The new definition of fillPothole, which checks to make sure that there is notalready a beeper in the hole, looks like this:
1 void fillPothole () {
2 turnRight ();

19

3 move();
4 if (noBeepersPresent ()) {
5 putBeeper ();
6 }
7 turnAround ();
8 move();
9 turnRight ();

10 }

The if statement in this example illustrates several features common to all control state-ments in Karel. The control statement begins with a header, which indicates the type ofcontrol statement alongwith any additional information to control the program flow. In thiscase, the header is
if (noBeepersPresent())

which shows that the statements enclosed within the braces should be executed only ifthe noBeepersPresent test is true. The statements enclosed in braces represent the bodyof the control statement.By convention, the body of any control statement is indented with respect to the state-ments that surround it. The indentation makes it much easier to see exactly which state-ments will be affected by the control statement. Such indentation is particularly importantwhen the body of a control statement contains other control statements. For example, youmight want to make an additional test to see whether Karel had any beepers before tryingto put one down. To do so, all you would need to do is add a new if statement inside theexisting one, like this:
1 if (noBeepersPresent ()) {
2 if (beepersInBag ()) {
3 putBeeper ();
4 }
5 }

In this example, the putBeeper command is executed only if there is no beeper on the cor-ner and there are beepers in Karel’s bag. Control statements that occur inside other controlstatements are said to be nested.
The outcome of a decision in a program is not always a matter of whether to do nothingor perform some set of operations. In some cases, you need to choose between two alter-native courses of action. For these cases, the if statement in Karel has an extended formthat looks like this:
if (conditional test) {

statements to be executed only if the condition is true
} else {

statements to be executed if the condition is false) {
}

20

This form of the if statement is illustrated by the function invertBeeperState, whichpicks up a beeper if there is one and puts down a beeper if the corner is empty.
1 void invertBeeperState () {
2 if (beepersPresent ()) {
3 pickBeeper ();
4 } else {
5 putBeeper ();
6 }
7 }

3.2. Iterative statements
In solving Karel problems, you will often find that repetition is a necessary part of your so-lution. If you were really going to program a robot to fill potholes, it would hardly be worth-while to have it fill just one. The value of having a robot perform such a task comes fromthe fact that the robot could repeatedly execute its program to fill one pothole after another.
To see how repetition can be used in the context of a programming problem, consider thefollowing stylized roadway inwhich the potholes are evenly spaced along 1st Street at everyeven-numbered avenue:

Your mission is to write a program that instructs Karel to fill all the holes in this road. Notethat the road reaches a dead end after 11th Avenue, which means that you have exactlyfive holes to fill.Since you know from this example that there are exactly five holes to fill, the control state-ment that you need is a for statement, which specifies that you want to repeat some oper-ation a predetermined number of times. The structure of the for statement appears com-plicated primarily because it is actually much more powerful than anything Karel needs.The only version of the for syntax that Karel uses is
int i;
for (i=0; i < count; i++) {

statements to be repeated
}

21

where count is an integer indicating the number of repetitions. For example, if you wantto change the fillPothole program so that it solves the more complex problem of fillingfive evenly-spaced holes, all you have to do is change the run function as follows:
1 void run() {
2 for (int i = 0; i < 5; i++) {
3 move();
4 fillPothole ();
5 move();
6 }
7 }

The for statement is useful only when you know in advance the number of repetitionsyou need to perform. In most applications, the number of repetitions is controlled by thespecific nature of the problem. For example, it seems unlikely that a pothole-filling robotcould always count on there being exactly five potholes. It would be much better if Karelcould continue to fill holes until it encountered some condition that caused it to stop, suchas reaching the end of the street. Such a program would be more general in its applicationand would work correctly in either of the following worlds as well as any other world inwhich the potholes were evenly spaced exactly two corners apart:

To write a general program that works with any of these worlds, you need to use a whilestatement. In Karel, a while statement has the following general form:
while (test) {

statements to be repeated
}

The test in the header line is chosen from the set of conditions listed in Table 1 earlier inthis chapter. In this case, Karel needs to check whether the path in front is clear by invokingthe condition frontIsClear. If you use the frontIsClear condition in a while loop, Karelwill repeatedly execute the loop until it hits a wall. The while statement therefore makes itpossible to solve the more general problem of repairing a roadway, as long as the potholesappear at every even-numbered corner and the end of the roadway is marked by a wall.The RoadRepairKarel program that accomplishes this task is shown in Listing6
Listing 6: Program to fill regularly spaced potholes in a roadway

1 /*

22

2 * File: RoadRepairKarel.c
3 * --------------------------
4 * The RoadRepairKarel program fills a series of regularly
5 * spaced potholes until Karel reaches the end of the roadway.
6 *
7 */
8
9 #include "karel.h"

10
11
12 void setup() {
13 loadWorld("PotholeFillingRoad");
14 }
15
16 void run() {
17 while (frontIsClear ()) {
18 move();
19 fillPothole ();
20 move();
21 }
22 }
23
24 /*
25 * Fills the hole beneath Karel 's current position by
26 * placing a beeper in the hole. For this function to
27 * work correctly , Karel must be facing east immediately
28 * above the hole. When execution is complete , Karel
29 * will have returned to the same square and will again
30 * be facing east. This version of fillPothole checks to
31 * see if there is already a beeper present before putting
32 * a new one down.
33 */
34 void fillPothole () {
35 turnRight ();
36 move();
37 if (noBeepersPresent ()) {
38 putBeeper ();
39 }
40 turnAround ();
41 move();
42 turnRight ();
43 }
44
45 /*
46 * Turns Karel 90 degrees to the right.
47 */
48 void turnRight () {
49 turnLeft ();
50 turnLeft ();

23

51 turnLeft ();
52 }
53
54 /*
55 * Turns Karel 180 degrees around.
56 */
57 void turnAround () {
58 turnLeft ();
59 turnLeft ();
60 }

3.3. Solving general problems
So far, the various pothole-filling programs have not been very realistic, because they relyon specific conditions, such as evenly spaced potholes, that are unlikely to be true in thereal world. If you want to write a more general program to fill potholes, it should be able towork with fewer constraints. In particular,

1. The program should be able to work with roads of arbitrary length. It does not makesense to design a program that works only for roadswith a predetermined number ofcorners. Instead, you want to make the same program work for roads of any length.Such programs, however, do need to know when they have come to the end of theroad, so it makes sense to require that the end of the roadway is marked by a wall.
2. The potholes may occur at any position in the roadway. There should be no limits onthe number of potholes or any restrictions on their spacing. A pothole is identifiedsimply by an opening in the wall representing the road surface.
3. Existing potholes may already have been repaired. Any of the potholes may alreadycontain a beeper left by a previous repair crew. In such cases, Karel should not putdown an additional beeper.

To change the program so that it solves this more general problem requires you to thinkabout the overall strategy in a different way. Instead of having the loop in themain programcycle through each pothole, you need to have it check each corner as it goes. If there is anopening at that corner, Karel needs to try and fill the pothole. If there is a wall, Karel cansimply move ahead to the next corner.This strategic analysis suggests that the solution to the general problemmay require noth-ing more than making the following change to the run function from Listing6:
1 /*
2 * CAUTION THIS FUNCTION CONTAINS A BUG
3 */
4 void run() {
5 while (frontIsClear ()) {
6 if (rightIsClear ()) {
7 fillPothole ();

24

8 }
9 move();

10 }
11 }

However, as the comment in the code sample suggests, this program is not quite right. Itcontains a logical flaw, the sort of error that programmers call a bug. On the other hand,the particular bug in this example is relatively subtle and would be easy tomiss, even if youtested the program. For example, the program works correctly on the following world, asshown in the following before-and-after diagrams:

From this example, things look pretty good. If you ended your testing here, however, youwould never notice that the program fails if you change the world so that there is a potholeon 7th Avenue. In this case, the before-and-after pictures look like this:

Karel stopswithout filling the last pothole. In fact, if youwatch the execution carefully, Karelnever even goes down into that last pothole to check whether it needs filling. What’s theproblem here?If you follow through the logic of the program carefully, you’ll discover that the bug lies inthe loop within the run function, which looks like this:
1 void run() {
2 while (frontIsClear ()) {
3 if (rightIsClear ()) {
4 fillPothole ();
5 }
6 move();

25

7 }
8 }

As soon as Karel finishes filling the pothole on 6th Avenue, it executes the move com-mand and returns to the top of the while loop. At that point, Karel is standing at the cor-ner of 7th Avenue and 2nd street, where it is blocked by the boundary wall. Because the
frontIsClear test now fails, the while loop exits without checking the last segment of theroadway.The bug in this program is an example of a programming problem called a fencepost (or
off-by-one) error. The name comes from the fact that it takes one more fence post thatyou might think to fence off a particular distance. How many fence posts, for example, doyou need to build a 100-foot fence if the posts are always positioned 10 feet apart? Theanswer is 11, as illustrated by the following diagram:

The situation in Karel’s world has much the same structure. In order to fill potholes in astreet that is seven corners long, Karel has to check for seven potholes but only has tomove six times. Because Karel starts and finishes at an end of the roadway, it needs toexecute one fewer move command than the number of corners it has to check.
Once you discover it, fixing this bug is actually quite easy. Before Karel stops at the end ofthe roadway, all that the program has to do is make a special check for a pothole at thefinal intersection, as shown in the program in Listing 7.

Listing 7: Program to fill irregularly spaced potholes
1 /*
2 * File: RoadRepairKarelGeneral.c
3 * --------------------------
4 * This version of the RoadRepairKarel program fills an
5 * arbitrary sequence of potholes in a roadway.
6 *
7 */
8
9 #include "karel.h"

10
11
12 void setup() {
13 loadWorld("PotholeFillingRoadUneven");
14 }
15
16 void run() {
17 while (frontIsClear ()) {

26

18 checkForPothole ();
19 move();
20 }
21 checkForPothole ();
22 }
23
24 /*
25 * Checks for a pothole immediately beneath Karel 's current
26 * looking for a wall to the right. If a pothole exists ,
27 * Karel calls fillPothole to repair it.
28 */
29 void checkForPothole () {
30 if (rightIsClear ()) {
31 fillPothole ();
32 }
33 }
34 /*
35 * Fills the pothole beneath Karel 's current position by
36 * placing a beeper on that corner. For this function to
37 * work correctly , Karel must be facing east immediately
38 * above the pothole. When execution is complete , Karel
39 * will have returned to the same square and will again
40 * be facing east. This version of fillPothole checks to
41 * see if there is already a beeper present before putting
42 * a new one down.
43 */
44 void fillPothole () {
45 turnRight ();
46 move();
47 if (noBeepersPresent ()) {
48 putBeeper ();
49 }
50 turnAround ();
51 move();
52 turnRight ();
53 }
54
55 /*
56 * Turns Karel 90 degrees to the right.
57 */
58 void turnRight () {
59 turnLeft ();
60 turnLeft ();
61 turnLeft ();
62 }
63
64 /*
65 * Turns Karel 180 degrees around.
66 */

27

67 void turnAround () {
68 turnLeft ();
69 turnLeft ();
70 }

4. Stepwise refinement

To a large extent, programming is the science of solving problems by computer. Becauseproblems are often difficult, solutions, and the programs that implement those solutions,can be difficult as well. In order to make it easier for you to develop those solutions, youneed to adopt a methodology and discipline that reduces the level of that complexity to amanageable scale.
In the early years of programming, the concept of computing as a science was more orless an experiment in wishful thinking. No one knew much about programming in thosedays, and few thought of it as an engineering discipline in the conventional sense. As pro-gramming matured, however, such a discipline began to emerge. The cornerstone of thatdiscipline is the understanding that programming is done in a social environment in whichprogrammers must work together. If you go into industry, you will almost certainly be oneof many programmers working to develop a large program. That program, moreover, is al-most certain to live on and require maintenance beyond its originally intended application.Someone will want the program to include some new feature or work in some differentway. When that occurs, a new team of programmers must go in and make the necessarychanges in the programs. If programs are written in an individual style with little or no com-monality, getting everyone to work together productively is extremely difficult.
To combat this problem, programmers began to develop a set of programming method-ologies that are collectively called software engineering. Using good software engineeringskills not only makes it easier for other programmers to read and understand your pro-grams, but also makes it easier for you to write those programs in the first place. One ofthe most important methodological advances to come out of software engineering is thestrategy of top-down design or stepwise refinement, which consists of solving problemsby starting with the problem as a whole. You break the whole problem down into pieces,and then solve each piece, breaking those down further if necessary.

4.1. An exercise in stepwise refinement
To illustrate the concept of stepwise refinement, let’s teach Karel to solve a new problem.Imagine that Karel is now living in a world that looks something like this:

28

On each of the avenues, there is a tower of beepers of an unknown height, although someavenues (such as 1st, 7th, and 9th in the sample world) may be empty. Karel’s job is tocollect all the beepers in each of these towers, put them back down on the easternmostcorner of 1st Street, and then return to its starting position. Thus, when Karel finishes itswork in the example above, all 21 beepers currently in the towers should be stacked on thecorner of 9th Avenue and 1st Street, as follows:

The key to solving this problem is to decompose the program in the right way. This taskis more complex than the others you have seen, which makes choosing appropriate sub-problems more important to obtaining a successful solution.

29

4.2. The principle of top-down design
The key idea in stepwise refinement is that you should start the design of your programfrom the top, which refers to the level of the program that is conceptually highest andmostabstract. At this level, the beeper tower problem is clearly divided into three independentphases. First, Karel has to collect all the beepers. Second, Karel has to deposit them onthe last intersection. Third, Karel has to return to its home position. This conceptual de-composition of the problem suggests that the run function for this program will have thefollowing structure:
1 void run() {
2 collectAllBeepers ();
3 dropAllBeepers ();
4 returnHome ();
5 }

At this level, the problem is easy to understand. Of course, there are a few details left overin the form of functions that you have not yet written. Even so, it is important to look ateach level of the decomposition and convince yourself that, as long as you believe that thefunctions you are about to write will solve the subproblems correctly, you will then have asolution to the problem as a whole.
4.3. Refining the first subproblem
Now that you have defined the structure for the program as a whole, it is time to moveon to the first subproblem, which consists of collecting all the beepers. This task is itselfmore complicated than the simple problems from the preceding chapters. Collecting allthe beepers means that you have to pick up the beepers in every tower until you get to thefinal corner. The fact that you need to repeat an operation for each tower suggests thatyou need a while loop here.
But what does this while loop look like? First of all, you should think about the condi-tional test. You want Karel to stop when it hits the wall at the end of the row. Thus, youwant Karel to keep going as long as the space in front is clear. Thus, you know that the
collectAllBeepers function will include a while loop that uses the frontIsClear test.At each position, you want Karel to collect all the beepers in the tower beginning on thatcorner. If you give that operation a name, whichmight be something like collectOneTower,you can go ahead and write a definition for the collectAllBeepers function even thoughyou haven’t yet filled in the details.
You do, however, have to be careful. The code for collectAllBeepers does not look like this:
1 /*
2 * CAUTION THIS FUNCTION CONTAINS A BUG
3 */
4
5 void collectAllBeepers {
6 while (frontIsClear ()) {

30

7 collectOneTower ();
8 move();
9 }

10 }

This implementation is buggy for exactly the same reason that the first version of the gen-eral RoadRepairKarel from the previous chapter failed to do its job. There is a fenceposterror (or off-by one bug) in this version of the code, because Karel needs to test for thepresence of a beeper tower on the last avenue. The correct implementation is
1 /*
2 * CAUTION THIS FUNCTION CONTAINS A BUG
3 */
4 void collectAllBeepers {
5 while (frontIsClear ()) {
6 collectOneTower ();
7 move();
8 }
9 collectOneTower ();

10 }

Note that this function has precisely the same structure as the main program from the
RoadRepairKarel program presented at the end of the last chapter. The only difference isthat this program calls collectOneTowerwhere the other called checkForPothole. Thesetwo programs are each examples of a general strategy that looks like this:
while (frontIsClear()) {

Perform some operation.
move();

}
Perform the same operation for the final corner.

You can use this strategy whenever you need to perform an operation on every corner asyou move along a path that ends at a wall. If you remember the general structure of thisstrategy, you can use it whenever you encounter a problem that requires such an operation.Reusable strategies of this sort come up frequently in programming and are referred to as
programming idioms or patterns. Themore patterns you know, the easier it will be for youto find one that fits a particular type of problem.
4.4. Coding the next level
Even though the code for the collectAllBeepers function is itself complete, you can’tactually execute the program until you solve the collectOneTower subproblem. When
collectOneTower is called, Karel is either standing at the base of a tower of beepers orstanding on an empty corner. In the former case, you need to collect the beepers in thetower. In the latter, you can simply move on. This situation sounds like an application forthe if statement, in which you would write something like this:

31

1 if (beepersPresent ()) {
2 collectActualTower ();
3 }

Before you add such a statement to the code, you should think about whether you need tomake this test. Often, programs can be made much simpler by observing that cases thatat first seem to be special can be treated in precisely the same way as the more generalsituation. In the current problem, what happens if you decide that there is a tower of beep-ers on every avenue but that some of those towers are zero beepers high? Making use ofthis insight simplifies the program because you no longer have to test whether there is atower on a particular avenue.The collectOneTower function is still complex enough that an additional level of decompo-sition is in order. To collect all the beepers in a tower, Karel needs to undertake the followingsteps:
1. Turn left to face the beepers in the tower.
2. Collect all the beepers in the tower, stopping when no more beepers are found.
3. Turn around to face back toward the bottom of the world.
4. Return to the wall that represents the ground.
5. Turn left to be ready to move to the next corner.

Once again, this outline provides a model for the collectOneTower function, which lookslike this:
1 void collectOneTower () {
2 turnLeft ();
3 collectLineOfBeepers ();
4 turnAround ();
5 moveToWall ();
6 turnLeft ();
7 }

4.5. Preconditions and postconditions
The turnLeft commands at the beginning and end of the collectOneTower function areboth critical to the correctness of this program. When collectOneTower is called, Karelis always somewhere on 1st Street facing east. When it completes its operation, the pro-gram as a whole will work correctly only if Karel is again facing east at that same corner.Conditions that must be true before a function is called are referred to as preconditions;conditions that must apply after the function finishes are known as postconditions.
When you define a function, you will get into far less trouble if you write down exactlywhat the pre- and postconditions are. Once you have done so, you then need to make

32

sure that the code you write always leaves the postconditions satisfied, assuming thatthe preconditions were satisfied to begin with. For example, think about what happensif you call collectOneTower when Karel is on 1st Street facing east. The first turnLeftcommand leaves Karel facing north, which means that Karel is properly aligned with thecolumn of beepers representing the tower. The collectLineOfBeepers function, has yetto be written but nonetheless performs a task that you understand conceptually, sim-ply moves without turning. Thus, at the end of the call to collectLineOfBeepers, Karelwill still be facing north. The turnAround call therefore leaves Karel facing south. Like
collectLineOfBeepers, the moveToWall function does not involve any turns but insteadsimply moves until it hits the boundary wall. Because Karel is facing south, this boundarywall will be the one at the bottom of the screen, just below 1st Street. The final turnLeftcommand therefore leaves Karel on 1st Street facing east, which satisfies the postcondi-tion.
4.6. Finishing up
Although the hard work has been done, there are still several loose ends that need tobe resolved. The main program calls two functions, dropAllBeepers and returnHome,that are as yet unwritten. Similarly, collectOneTower calls collectLineOfBeepers and
moveToWall. Fortunately, all four of these functions are simple enough to code without anyfurther decomposition, particularly if you use moveToWall in the definition of returnHome.The complete implementation appears in Listing8.

Listing 8: Program to solve the collect towers of beepers
1 /*
2 * File: BeeperCollectingKarel.c
3 * --------------------------------
4 * The BeeperCollectingKarel program collects all the beepers
5 * in a series of vertical towers and deposits them at the
6 * rightmost corner on 1st Street.
7 *
8 */
9

10 #include "karel.h"
11
12
13 void setup() {
14 loadWorld("BeeperCollection");
15 }
16
17 void run() {
18 collectAllBeepers ();
19 dropAllBeepers ();
20 returnHome ();
21 }
22
23 /*

33

24 * Collects the beepers from every tower by moving along 1st
25 * Street , calling collectOneTower at every corner. The
26 * postcondition for this function is that Karel is in the
27 * easternmost corner of 1st Street facing east.
28 */
29 void collectAllBeepers () {
30 while (frontIsClear ()) {
31 collectOneTower ();
32 move();
33 }
34 collectOneTower ();
35 }
36
37 /*
38 * Collects the beepers in a single tower. When collectOneTower
39 * is called , Karel must be on 1st Street facing east. The
40 * postcondition for collectOneTower is that Karel must again
41 * be facing east on that same corner.
42 */
43 void collectOneTower () {
44 turnLeft ();
45 collectLineOfBeepers ();
46 turnAround ();
47 moveToWall ();
48 turnLeft ();
49 }
50 /*
51 * Collects a consecutive line of beepers. The end of the
52 * beeper line is indicated by a corner that contains
53 * no beepers.
54 */
55 void collectLineOfBeepers () {
56 while (beepersPresent ()) {
57 pickBeeper ();
58 if (frontIsClear ()) {
59 move();
60 }
61 }
62 }
63 /*
64 * Drops all the beepers on the current corner.
65 */
66 void dropAllBeepers () {
67 while (beepersInBag ()) {
68 putBeeper ();
69 }
70 }
71 /*
72 * Returns Karel to its initial position at the corner of 1st

34

73 * Avenue and 1st Street , facing east. The precondition for
74 * this function is that Karel must be facing east
75 * somewhere on 1st Street , which is true at the conclusion
76 * of collectAllBeepers.
77 */
78 void returnHome () {
79 turnAround ();
80 moveToWall ();
81 turnAround ();
82 }
83
84 /*
85 * Moves Karel forward until it is blocked by a wall.
86 */
87 void moveToWall () {
88 while (frontIsClear ()) {
89 move();
90 }
91 }
92
93 /*
94 * Turns Karel 90 degrees to the right.
95 */
96 void turnRight () {
97 turnLeft ();
98 turnLeft ();
99 turnLeft ();

100 }
101
102 /*
103 * Turns Karel 180 degrees around.
104 */
105 void turnAround () {
106 turnLeft ();
107 turnLeft ();
108 }

4.7. Algorithms
Although top-down design is a critical strategy for programming, it cannot be applied me-chanically without thinking about problem-solving strategies. Figuring out how to solve aparticular problem by computer generally requires considerable creativity. The process ofdesigning a solution strategy is traditionally called algorithmic design.
The word algorithm comes from the name of a ninth-century Persian mathematician, AbuJa’far Mohammed ibn Mûsâ al-Khowârizmî, who wrote an influential treatise on mathe-matics. Today, the notion of an algorithm has been formalized so that it refers to a solutionstrategy that meets the following conditions:

35

• The strategy is expressed in a form that is clear and unambiguous.
• The steps in the strategy can be carried out.
• The strategy always terminates after a finite number of steps.

You will learn much more about algorithms as you continue your study of programming,but it is useful to look at a few simple algorithms in Karel’s world.

4.8. Solving a maze
As an example of algorithmic design, suppose that you wanted to teach Karel to escapefrom a maze. In Karel’s world, a maze might look like this:

The exit to the maze is marked by a beeper, so that Karel’s job is to navigate the corridorsof the maze until it finds the beeper indicating the exit. The program, however, must begeneral enough to solve any maze, and not just the one pictured here.
There are several strategies you could use for solving such amaze. When Theseus neededto escape from the Labyrinth of Crete, he adopted—at the suggestion of King Minos’sdaughter Ariadne, whom Theseus promptly abandoned on the next island he reached—thestrategy of unwinding a ball of string as he explored the maze. You could devise a similarstrategy for Karel, in which beepers serve the same function.
For most mazes, however, you can use a simpler strategy called the right-hand rule, inwhich you begin by putting your right hand on the adjacent wall and then go through themaze without ever taking your hand off the wall. Another way to express this strategy is toproceed through the maze one step at a time, always taking the rightmost available path.You can easily write a Karel program to apply the right-hand rule. The program in Listing

36

9, for example, expresses the algorithm for the right-hand rule in a particularly compactform. You should work through the logic of this algorithm and convince yourself that itindeed accomplishes the task. It is important to note that the code that implements analgorithm may not be very complicated. Indeed, coming up with the right algorithm oftenleads to extremely simple code.
Listing 9: Program to solve a maze

1 /**
2 * File: MazeRunningKarel.c
3 * --------------------------------
4 * In this program , Karel can solve a maze
5 * using the right -hand rule.
6 *
7 */
8
9 #include "karel.h"

10
11
12 void setup() {
13 loadWorld("Maze");
14 }
15
16 void run() {
17 while (noBeepersPresent ()) {
18 turnRight ();
19 while (frontIsBlocked ()) {
20 turnLeft ();
21 }
22 move();
23 }
24 }
25
26 /*
27 * Turns Karel 90 degrees to the right.
28 */
29 void turnRight () {
30 turnLeft ();
31 turnLeft ();
32 turnLeft ();
33 }
34
35 /*
36 * Turns Karel 180 degrees around.
37 */
38 void turnAround () {
39 turnLeft ();
40 turnLeft ();
41 }

37

4.9. Doubling the number of beepers
Another programming task that leads to interesting algorithmic choices is the problem ofgetting Karel to double the number of beepers on a corner. For example, suppose that Karelstarts out in the world

where there are some number of beepers, in this case four, on the corner of 1st Streetand 2nd Avenue and an infinite number of beepers in Karel’s beeper bag. The goal in thisproblem is to write a function doubleBeepers that doubles the number of beepers on thecurrent square. Thus, if you execute the function
1 void run() {
2 move();
3 doubleBeepers ();
4 move();
5 }

on the world shown in the preceding diagram, the final state of the world should look likethis:

The program should be general enough to work for any number of beepers. For example,if there had originally been 21 beepers on the corner of 1st Street and 2nd Avenue, the pro-gram should end with 42 beepers on that corner.
Writing the doubleBeepers function is harder than it initially appears. Your first step is todevise an algorithmic strategy to solve the problem. Because Karel has an infinite number

38

of beepers in his bag, you can’t start by picking up all the beepers on the corner, becauseyou would then have no way of telling how many beepers to put down. As with most algo-rithms in Karel’s world, you need to process the beepers one at a time. You can pick oneup from the corner, but you then have to keep track somehow of the fact that you have toadd two beepers to the result.
The easiest strategy to devise involves the use of a temporary storehouse on some cornerthat is initially empty, such as the corner at 1st Street and 3rd Avenue. If every time youpick up a beeper from the original pile on 2nd Avenue you put down two beepers in thestorehouse on 3rd Avenue, you will have twice the original number of beepers when thefirst pile is exhausted. Thus, you can create the correct value in the storehouse by callingthe following function:
1 void doubleIntoStorehouse () {
2 while (beepersPresent ()) {
3 pickBeeper ();
4 move();
5 putBeeper ();
6 putBeeper ();
7 turnAround ();
8 move();
9 turnAround ();

10 }
11 }

The precondition for this function is that Karel is standing on a corner containing a pile of
N beepers facing a corner with no beepers. The postcondition is that Karel winds up inits original position with no beepers on that corner but 2N beepers on the corner Karel isfacing.This function does the interesting algorithmic work, but does not entirely satisfy the con-straints of the problem as stated because the final pile of beepers is not on the originalsquare. To get it there, you need to implement a similar function that simply transfers thepile back to the adjacent square. This function has almost exactly the same structure, ex-cept that it deposits only one beeper for each one it collects. If you design a
transferBeepersBack function to work with the same precondition as that used for
doubleIntoStorehouse, it will look like this:
1 void transferBeepersBack () {
2 while (beepersPresent ()) {
3 pickBeeper ();
4 move();
5 putBeeper ();
6 turnAround ();
7 move();
8 turnAround ();
9 }

10 }

39

The doubleBeepers function itself then consists of the following code:
1 void doubleBeepers () {
2 doubleIntoStorehouse ();
3 move();
4 turnAround ();
5 transferBeepersBack ();
6 move();
7 turnAround ();
8 }

This strategy, however, is not the only one you might use. In many cases, there are algo-rithms that workmuch better than the obvious ones, although they are often difficult to dis-cover. Many such algorithms depend on sophisticated programming techniques that youwill encounter later in your study of computer science. For example, the doubleBeepersproblem can be solved quite easily if you use a technique called recursion, which is simplythe process of having a function call itself. The following implementation of doubleBeepersgets the job done without needing a storehouse or any moving around:
1 void doubleBeepers () {
2 if (beepersPresent ()) {
3 pickBeeper ();
4 doubleBeepers ();
5 putBeeper ();
6 putBeeper ();
7 }
8 }

Although it is fun to try and figure out what this program is doing, you shouldn’t worry atthis point if you find it hard to understand. The point of showing this solution is simply todemonstrate that there aremany different algorithms for solving problems, some of whichcan be very compact and efficient. As you study computer science, you will learn a greatdeal more about algorithmic techniques and gain the skills you need to write this type ofprogram on your own.

5. Some more things Karel can do

5.1. Logical operations
As you write more sophisticated Karel programs, you will discover that it is sometimes dif-ficult to express certain conditional tests whose English equivalents include conjunctionslike and and or. As an example, try to write a Karel while statement that moves Karel for-ward until it is either blocked by a wall or encounters a beeper. To make it easier to writeinteresting programs, the Karel language allows you to use the following logical operators,which are actually part of C and not something, which is limited to Karel:

40

&& Equivalent to the English word and.
|| Equivalent to the English word or (in the formal sense of either or both).
! Equivalent to the English word not.
With these operators, it is easy to write the while statement suggested earlier in this sec-tion, because you can combine the conditions into a single test:
1 while (frontIsClear () && noBeepersPresent ()) {
2 move();
3 }

The fact that these operators work in Karel programs reveals a notable fact about the waysuch programs are implemented. The Karel programs that you write turn out to be sim-ply C programs in disguise. There is no separate Karel language; everything that you’veseen in Karel is actually just part of standard C or implemented using standard C as part ofone of the functions in the karel.h library. While this strategy makes the Karel simulatormuch easier to implement and means that you will be using the same tools that you willuse throughout the semester, it does have a downside. The logical operators &&, ||, and
! are not the only pieces of standard C that you might incorporate into a Karel program.Given the way Karel is implemented, you could include anything from standard C in a Karelprogram, and the C compiler would not complain at all. Doing so, however, defeats the pur-pose of Karel, which is intended to provide a simple platform for learning programming. Soeven though the C compiler won’t complain if you use more advanced C structures, yourprofessor will.
Acceptable Karel programs must limit themselves to the features described in this book.

41

A. Karel Reference Card

This appendix defines the structure of the Karel programming language on a single page.
Karel program structure:
1 /**
2 * Comments may be included anywhere in the program between a
3 * slash -star and the corresponding star -slash characters.
4 */
5 include "karel.h";
6
7 void setup() {
8 loadWorld("nameOfWorld"); /* Filename of Karel 's world */
9 }

10
11 void run() {
12 /* statements in the body of the function */
13 }
14 /* definitions of your own functions */

Built-in Karel commands
move(); turnLeft(); putBeeper();
pickBeeper();

Iterative statements:
int i;
for (i=0; i < count; i++) {

statements to be repeated
}
while (test) {

statements to be repeated
}

Function definitions:
void name() {

commands that make up the body of
the function
}

Karel condition names
frontIsClear() frontIsBlocked()
leftIsClear() leftIsBlocked()
rightIsClear() rightIsBlocked()
beepersPresent() noBeepersPresent()
beepersInBag() noBeepersInBag()
facingNorth() notFacingNorth()
facingEast() notFacingEast()
facingSouth() notFacingSouth()
facingWest() notFacingWest()

Conditional statements:
if (conditional test) {

statements to be executed only if the
condition is true
}

if (conditional test) {
statements to be executed only if the

condition is true
} else {

statements to be executed if the con-
dition is false) {
}

42

	Introducing Karel the Robot
	What is Karel?
	Karel's world
	What can Karel do?
	The importance of practical experience

	Programming Karel
	Hello World - Our first simple Karel program
	Solving a more interesting problem
	Defining new functions
	Decomposition
	Choosing the correct decomposition

	Control statements in Karel
	Conditional statements
	Iterative statements
	Solving general problems

	Stepwise refinement
	An exercise in stepwise refinement
	The principle of top-down design
	Refining the first subproblem
	Coding the next level
	Preconditions and postconditions
	Finishing up
	Algorithms
	Solving a maze
	Doubling the number of beepers

	Some more things Karel can do
	Logical operations

	Karel Reference Card

