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OLIVER STEIN

Abstract. We develop a theory of vector valued automorphic forms associated to the Weil
representation ωf and corresponding to vector valued modular forms transforming with the
“finite” Weil representation ρL. For each prime p we determine the structure of a vector
valued spherical Hecke algebra depending on ωf , which acts on the space of automorphic
forms.

1. Introduction

Automorphic forms can be seen as a generalization of modular forms. They play a key role
in defining (automorphic) L-functions and are thereby a vital part of the Langlands program.
For all major types of modular forms a theory of automorphic forms has been developed,
including the action of some suitable Hecke algebra. As a consequence, a standard L-function
associated to common eigenform in terms of its Satake parameters can be defined. The
present paper is the first part of two articles which address the task of defining a standard
L-function associated to a vector valued modular form transforming according to the Weil
representation. This “finite” Weil representation is defined in terms of an even integral lattice
L and the associated discriminant group L′/L, where L′ is the dual lattice of L. In the setting
of the present paper it is a representation of SL2(Z/NZ) on the group ring C[L′/L], where N
means the level of L.

This kind of modular forms plays an important role in many recent papers. The weakly
holomorphic forms of this type serve as input to a singular theta lift, which maps them to
meromorphic modular forms on orthogonal groups whose zeroes and poles are supported
on special divisors and which possess an infinite product expansion. This theta lift is the
celebrated Borcherds lift ([Bo], [Br1]), which has many applications in geometry, algebra and
in the theory of Lie algebras. For instance, it is an interesting and widely studied problem to
classify reflective automorphic forms and thereby reflective lattices and Kac-Moody algebras
(see e. g. [Sch1] and [Wa]). Most of the classical theory of modular forms has been established
for these modular forms over the past years (see e. g. [Br1], [Br2], [St1] or [Mue]). In [BS],
the foundations of a Hecke theory were laid. In particular, a Hecke operator T

(
m2 0
0 1

)
for m

dividing |L′/L| is defined by the action of the double coset SL2(Z)
(
m2 0
0 1

)
SL2(Z).

In his thesis [We], Werner introduced a generalized version of the Hecke operators defined
in [BS]. Most notably, these operators depend on a matrix (m 0

0 1 ), where m is coprime to N
and is not necessarily a square (modulo N). Their construction is based on the extension of
the “finite” Weil representation to the group GL2(Z/NZ) on a larger representation space
X, where C[L′/L] can be realized as an embedding into X. As a consequence, the classical
space of vector valued modular forms (as usually considered in the literature and in the
present paper) is a subspace of the considered vector valued modular forms for the extended
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Weil representation, which is not fixed by Werner’s Hecke operators (see [We], p. 19, for
details). Also, first steps towards a theory of vector valued automorphic forms corresponding
to these more general vector valued modular forms were undertaken by Werner: he defined
automorphic forms for the (extended) Weil representation, however without specifying the
space these forms belong to. Additionally, for a prime p coprime toN and not a square modulo
N , Werner introduced an adelic Hecke operator. His definition is analogous to Gelbart’s
presentation of the scalar valued adelic Hecke operator (cf. [Ge], § 3, B, more specifically,
Lemma 3.7) but rather ad-hoc. It may be interpreted as the convolution of a suitable vector
valued characteristic function of the double coset GL2(Zp)

(
1 0
0 p

)
GL2(Zp) and a vector valued

automorphic form. The convolution in this case is based on the concept of the Bochner
integral. Finally, in [We], Theorem 53, it is proved that the adelic Hecke operator corresponds
to the Hecke operator T

(
p 0
0 1

)
mentioned before. Yet, to the best of my knowledge, so far a

rigorous theory of vector valued automorphic forms does not exist. This motivates the main
objectives of the present paper

i) to develop a theory of vector valued automorphic forms corresponding to vector valued
modular forms for the finite Weil representation along the lines of [Ge], § 3 A, or [KL],
Section 12.1-12.4.

ii) to determine the structure of a fitting local vector valued spherical Hecke algebra and
iii) to study its action on the space of automorphic forms by means of Hecke operators

also defined by convolution and tailored to our setting.

These adelic Hecke operators correspond to Hecke operators T
(

p−k 0

0 p−l

)
for any prime p and

k + l ∈ 2Z. For p dividing the level of L these operators are a slight extension of the Hecke
operators T

(
m2 0
0 1

)
for m dividing the level of the lattice L in [BS]. This extension is specified

in [St2].
It is important to stress that our results do not hold in full generality, in particular not for

all lattices L:

i) We only consider lattices L of even signature, which implies that we restrict ourselves
to vector valued modular forms of integral weight on the group SL2(Z). Nevertheless,
it seems reasonable that our theory could be extended to odd signature and modular
forms of half integral weight on the metaplectic cover of SL2(Z).

ii) To determine the structure of the local vector valued Hecke algebras, we assume that
the discriminant group L′/L is anisotropic. It should be possible to remove this
assumption. Without it, the structure of the involved Hecke algebras would be more
complicated and the Satake map in Theorem 4.10 is more difficult to calculate. To
obtain a smooth theory of adelic Hecke operators as in the present paper one would
have to choose appropriate subalgebras.

iii) The Hecke operators in [BS] are parametrized by matrices whose determinant is either
a square or a square modulo the level of L. This is similar to the situation of the
classical half-integral weight modular forms. As one of our goals is to establish the
compatibility between the adelic Hecke operators in this paper and the ones on vector

valued modular forms, we restrict ourselves to operators T
(

p−k 0

0 p−l

)
with k+ l ∈ 2Z.

It might be possible to extend our results to Hecke operators where p is a square
modulo the level of L and k+ l is not even. In this case the definition of the operators

T
(

p−k 0

0 p−l

)
are covered by [BS], the definition of the generators of the involved Hecke
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algebras and the adelic Hecke operators should be the same as in the present paper
and Theorem 5.9 is likely to carry over to this case as well.

The second article in this series of papers then deals with the definition of a standard
L-function for these vector valued modular forms and studies its analytic properties.

The paper at hand should be seen as the starting point for a more comprehensive study
on vector valued automorphic forms. For one, vector valued modular forms for the Weil
representation enjoy relations to scalar valued elliptic modular forms for Γ0(N) (cf. [Sch]),
N the level of the lattice L (see Section 2 for details), and to Jacobi forms of lattice index
(see e. g. [Wa]). For both of these types of modular forms exists a well established theory of
automorphic forms (see e. g. [Ge] and [Mu1]). It would be interesting to study how exactly
the vector valued automorphic forms are related to the elliptic automorphic forms and the
Jacobi automorphic forms.
Automorphic forms are closely connected to automorphic representations (cf. [Ge], Section
5). It should be worthwhile to investigate whether a similar theory can be build in the case
of vector valued modular forms, and if so, what relations there are.

Let us describe the content of the paper in more detail. To this end, let (L, (·, ·)) be an
even lattice of even rank m and type (b+, b−) with (even) signature sig(L) = b+ − b− and
level N . Associated to the bilinear form (·, ·) there is a quadratic form q. The modulo 1
reduction of (·, ·) and q defines a bilinear form and a quadratic form, respectively, on the
discriminant group D = L′/L. The Weil representation ρL is a representation of Γ = SL2(Z)
on the group ring C[D]. As usual, we denote with Zp the ring of p-adic integers. As will be
explained later in the paper, ρL is isomorphic to a finite dimensional subrepresentation of the

Weil representation ωf =
⊗

p<∞ ωp (originally defined by Weil [Wei]) of SL2(Ẑ) on a space

SL (isomorphic to C[D]). Here Ẑ is defined by
∏

p<∞ Zp. We have the relation

ρL(γ) = ωf (γf )

for all γ ∈ Γ, where γf is the projection of γ into SL2(Ẑ) (see e. g. [YY], p. 3456). Based on
this relation and the extension process of ρL to a subgroup of GL2(Q) in [BS], Section 3, we
transfer this process to the extension of ωf to some subgroup of GL2(Af ), where Af means
the finite adeles. For the details see Chapter 3.

For κ ∈ Z, a vector valued modular form of weight κ and type ρL is a holomorphic function
f : H → C[D], which satisfies

f(γτ) = (cτ + d)κρL(γ)f(τ)

for all γ =
(
a b
c d

)
∈ Γ and all τ in the complex upper half plane H, and is holomorphic at

the cusp ∞. We denote the space of all such functions with Mκ(ρL) and write Sκ(ρL) for the
subspace of cusp forms. Now let A be the ring of adeles, G(Q) a subgroup of GL2(Q)+ and

G(A) =
∏′

p≤∞
Qp =

(gp) ∈
∏
p≤∞

Qp | gp ∈ Kp for almost all primes p

 ,

where Qp and Kp is a subgroup of GL2(Qp) and GL2(Zp), respectively. We assign to f above
a function Ff : G(Q) \ G(A) → SL by means of strong approximation for the group G(A). For
g = gQ(g∞ × k) we put

Ff (g) = ωf (k)
−1j(g∞, i)

−κf(g∞i).
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Here gQ ∈ G(Q), g∞ ∈ Q∞ ⊂ GL+
2 (R) and k ∈ K =

∏
p<∞Kp (see (2.1) for the definitions

of the groups above). In Proposition 5.3 and Lemma 5.4 we will show that F is a cuspidal
vector valued automorphic form of type ωf , which can be seen as a vector valued analogue of
a scalar valued cuspidal automorphic form. Moreover, Theorem 5.5 states that space of these
functions, satisfying further properties, is isomorphic to Sκ(ρL). We denote this space with
Aκ(ωf ). The inverse map can also be given explicitly: For F ∈ Aκ(ωf ) it can be proven that
fF , specified by

τ 7→ fF (τ) = j(gτ , i)
κF (gτ × 1f )

with gτ = ( 1 x
0 1 )

(
y1/2 0

0 y−1/2

)
and τ = gτ i = x+ iy ∈ H, is indeed an element of Sκ(ρL). Note

that the definition of Ff has already occurred in the work of Werner ([We]). The function
fF can be found in Kudla’s paper [Ku]. However, as far as I know, a theory of vector valued
automorphic forms (as outlined above) has not yet appeared in the literature.

It is well known that for each prime p the spherical Hecke algebra H(GL2(Qp)//GL2(Zp))
of locally constant, compactly supported and complex-valued functions, which additionally
satisfy

f(k1gk2) = f(g)

for all k1, k2 ∈ GL2(Zp) and all g ∈ GL2(Qp), acts on the space of scalar valued automorphic
forms. This action is compatible with the action of Hecke operators on the space of cusp forms
(see for example [BP], [Ge] or [KL]). In this paper we define for each prime p a spherical Hecke
algebra H(Qp//Kp, ωp) of type ωp as follows: Let Lp = L ⊗ Zp and SLp the representation
space as above, but associated to the p-adic lattice Lp. Note that SL =

⊗
p<∞ SLp (see

Chapter 3 for details). Then H(Qp//Kp, ωp) consists of all locally constant and compactly
supported functions f : Qp → SLp , which satisfy

f(k1gk2) = ωp(k1) ◦ f(g) ◦ ωp(k2)

for all k1, k2 ∈ Kp and all g ∈ Qp. Hecke algebras of this type are well known and studied in
the literature ([BK], [Ho], [He]). A “tool” to investigate the structure of Hecke algebras (for a
pair of groups (G,K) with suitable properties), vector valued or not, is the Satake map (see
[Sa] or [Ca]), whose image is a Hecke algebra easier to understand. Under the assumption
that L′

p/Lp is anisotropic, we determine a set of generators of H(Qp//Kp, ωp) and connect
it to a scalar valued Hecke algebra by means of a variant of the classical Satake map (see
(4.14)), which we adopt from [He] and which is suitable in our situation. Both cases, p||D|
and p ∤ |D|, are treated. In the first instance, the structure of H(Qp//Kp, ωp) is way more
complicated than in the second one as the Weil representation ωp is non-trivial. We obtain
for a subalgebra H+(Qp//Kp, ωp) the following theorem (see Thm. 4.10 and Section 2 and
Subsection 4.1 for the details):

Theorem 1.1. Let p be a prime dividing |D| and the p-group Dp of D anisotropic. Further,
let Mp, Dp, and N(Zp) be as in (2.1) and W the usual Weyl group. Then the Hecke algebras

H+(Qp//Kp, ωp) and H(Mp//Dp, ωp
|S

N(Zp)
Lp

)W are isomorphic, where S
N(Zp)
Lp

is subspace of

SLp, which is invariant under the action of N(Zp) via the Weil representation.

If p is coprime to |D|, the Weil representation ωp is trivial and we essentially recover the
classical result for GL2 (see Theorem 4.12).

Subsequently, we define an action of H(Qp//Kp, ωp) on Aκ(ωf ), which can be interpreted
as vector valued analogue of the versions in [BP] or [Mu1]. Under the assumption that the
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lattice L is unimodular, our adelic Hecke operators are closely related to the classical scalar
valued adelic Hecke operators (see Remark 5.7, iii), for details). However, Werner’s adelic
Hecke operator and the ones in this paper can not be compared without further work since

i) the Hecke operator in this paper is defined in terms of all primes p and not only for
those with p ∤ |L′/L|,

ii) the Hecke operator in this paper is defined by the action of a local Hecke algebra
while Werner’s definition adopts Gelbart’s construction without involving the action
of a Hecke algebra,

iii) the Hecke operator in this paper is only defined in terms of matrices of GL2(Qp) whose
determinant is a square and not for the remaining matrices of GL2(Qp).

As is common in the literature on automorphic forms, we show in Theorem 5.9 that this
action is compatible with the action of Hecke operators on Sκ(ρL). More precisely:

Theorem 1.2. Let p be a prime and (k, l) ∈ Λ+. If p divides |D|, let Tk,l ∈ H+(Qp//Kp, ωp)
as in Corollary 4.7. If (p, |D|) = 1, let Tk,l = 1Kpm(pk,pl)Kp

idSLp
∈ H(Qp//Kp, ωp) be as in

Theorem 4.12 (1Kpm(pk,pl)Kp
being the characteristic function of the double coset Kpm(pk, pl)Kp).

Further, let T Tk,l be the adelic Hecke operator as in Definition 5.6 and
T (m(p−k, p−l)) the Hecke operator as defined in Section 2. Then for any f ∈ Sκ(ρL) we have

(1.1) T Tk,l(Ff ) = F
p(k+l)(κ2 −1)T (m(p−k,p−l))f

,

where Ff is the automorphic form related to f via the adelization map A as mentioned above.

This result resembles the corresponding classical statement as e. g. in [Ge], Lemma 3.7 or
Prop. 13.6 in [KL].

2. Preliminaries on the “finite” Weil representation, vector valued modular
forms and some notation

In this section we provide some notation used throughout the paper and briefly summarize
some facts on lattices, discriminant forms and the “finite” Weil representation. We also recall
the definition of vector valued modular forms for the Weil representation and some related
theory relevant for the present paper.

As usual, we let e(z), z ∈ C, be the abbreviation for e2πiz. For any prime p ∈ Z by Qp

we mean the field of p-adic numbers and by Zp its ring of p-adic integers; | · |p is the p-adic
absolute value and ordp(·) the p-adic valuation of Qp. We write A for the adele ring and A×

for the idele group. By Af we mean the set of finite adeles.
The following matrix groups appear frequently in the paper.

G(R) = {M ∈ GL2(R) | det(M) ∈ (R×)2} for any commutative ring R with 1,

N(Qp) = {( 1 r
0 1 ) | r ∈ Qp} and N(Zp) accordingly,

Qp = G(Qp),

Kp = G(Zp),

Mp = {M =
(
r1 0
0 r2

)
∈ GL2(Qp) | det(M) ∈ (Q×

p )
2} and,

Dp = Mp ∩ Kp.

(2.1)
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To ensure a more readable exposition, we use abbreviations for certain elements of these
groups:

n (c) = ( 1 0
c 1 ) , n(b) =

(
1 b
0 1

)
, m(s) =

(
s 0
0 s−1

)
, m(t1, t2) =

(
t1 0
0 t2

)
and w =

(
0 1
−1 0

)
.

The symbol ιp occurs in some places of the paper: For xp ∈ Qp let ιp(xp) = (αq)q≤∞ ∈ G(A)
with αq = 1q for q ̸= p and αp = xp, where 1q means the unit matrix in Qq. Moreover, we
will make frequently use of the following subsets of Z2:

Λ = {(k, l) ∈ Z2 | k, l ≥ 0 and k + l ∈ 2Z} and

Λ+ = {(k, l) ∈ Λ | k ≤ l}.

Finally, as usual, we write H = {τ ∈ C | Im(τ) > 0} for the complex upper half plane, let
( ·
d

)
be the Legendre symbol and use 1A as a symbol for the characteristic function of the set A.

Let L be a lattice of rank m equipped with a symmetric Z-valued bilinear form (·, ·) such
that the associated quadratic form

q(x) :=
1

2
(x, x), x ∈ L,

takes values in Z. We assume that m is even, L is non-degenerate and denote its type by
(b+, b−) and its signature b+ − b− by sig(L). Note that sig(L) is also even. We stick with
these assumptions on L for the rest of this paper unless we state it otherwise. Further, let

L′ := {x ∈ V = L⊗Q | (x, y) ∈ Z for all y ∈ L}

be the dual lattice of L. Since L ⊂ L′, the elementary divisor theorem implies that L′/L is
a finite group. We denote this group by D. The modulo 1 reduction of both, the bilinear
form (·, ·) and the associated quadratic form, defines a Q/Z-valued bilinear form (·, ·) with
corresponding Q/Z-valued quadratic form onD. We callD combined with (·, ·) a discriminant
form, discriminant group or a quadratic module. We call it anisotropic, if q(µ) = 0 holds only
for µ = 0.

It is well known that any discriminant form of odd order can be decomposed into a direct
sum of quadratic modules of the form

At
pk =

(
Z/pkZ,

tx2

pk

)
.

An anisotropic quadratic module of odd order consists of p-groups Dp, which can either be
written as At

p or as a direct sum At
p ⊕A1

p. For further details we refer to [BEF].
The “finite” Weil representation ρL is a representation of Γ = SL2(Z) on the group ring

C[D]. We denote the standard basis of C[D] by {eλ}λ∈D. On the standard generators

(2.2) S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

of Γ ρL is given by

ρL(T )eλ := e(q(λ))eλ,

ρL(S)eλ :=
e(− sig(L)/8)

|D|1/2
∑
µ∈D

e(−(µ, λ))eµ.
(2.3)

We denote by N the level of the lattice L. It is the smallest positive integer such that
Nq(λ) ∈ Z for all λ ∈ L′. One can prove that the Weil representation ρL is trivial on Γ(N),
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the principal congruence subgroup of level N . This can for example be deduced from [Sch],
Prop. 4.2. Therefore, ρL factors over the finite group

Γ/Γ(N) ∼= SL2(Z/NZ).
For the rest of this paper we suppose that N is odd.

We now define vector valued modular forms of type ρL. With respect to the standard basis
of C[D] a function f : H → C[D] can be written in the form

f(τ) =
∑
λ∈D

fλ(τ)eλ.

The following operator generalises the usual Petersson slash operator to the space of all those
functions. For κ ∈ Z we define

(2.4) (f |κ,L γ)(τ) = j(γ, τ)−κρL(γ)
−1f(γτ),

where
j(γ, τ) = det(γ)−1/2(cτ + d)

is the usual automorphy factor if γ =
(
a b
c d

)
∈ GL+

2 (R).
A holomorphic function f : H → C[D] is called a vector valued modular form of weight

κ and type ρL for Γ if f |κ,L γ = f for all γ ∈ Γ, and if f is holomorphic at the cusp ∞.
Here the last condition means that all Fourier coefficients c(λ, n) of f with n < 0 vanish. If
in addition c(λ, n) with n = 0 vanish, we call the corresponding modular form a cusp form.
We denote by Mκ(ρL) the space of all such modular forms, by Sκ(ρL) the subspace of cusp
forms. For more details see e.g. [Br1] or [BS].

The Petersson scalar product on Sκ(ρL) is given by

(2.5) (f, g) =

∫
Γ\H

⟨f(τ), g(τ)⟩ Im τκdµ(τ)

where τ = x+ iy and

dµ(τ) =
dx dy

y2

denotes the hyperbolic volume element and

(2.6)

〈∑
λ∈D

aλeλ,
∑
λ∈D

bλeλ

〉
=

∑
λ∈D

aλbλ.

is the standard scalar product on C[D].
Let d an integer. By gd(D) we denote the Gauss sum

(2.7) gd(D) =
∑
λ∈D

e(dq(λ))

and we set g(D) = g1(D). Since fractions of these Gauss sums are of some relevance in this
paper, we gather some facts on the sums gd(D) and quotients thereof.

Lemma 2.1. i) The Gauss sums gd(D) satisfy the properties

g−d(D) = gd(D)

gd(D ⊕D′) = gd(D)gd(D
′)

gdr(D) = gd(D),

where r ∈ Z is square in (Z/NZ)×.
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ii) If d is coprime to |D|, we have

(2.8)
g(D)

gd(D)
=

(
d

|D|

)
e

(
(d− 1) oddity(D)

8

)
.

If |D| is odd, the right-hand side of (2.8) simplifies to the quadratic character

(2.9) χD(d) =

(
d

|D|

)
.

One way to proof equation (2.8) is by the action of the finite Weil represntation on matrices
γ ∈ Γ with γ ≡

(
a 0
0 d

)
mod N . McGraw, [McG], Lemma 4.6, and Scheithauer, [Sch], Prop.

4.2, calculated the Weil representation of such matrices γ leading to identity (2.8). As for
equation (2.9), Borcherds in [Bo1], Theorem 5.4, gave also a formula for the action of ρL on
these matrices γ. His formula is more general since it includes the case of discriminant forms
of odd signature. Comparing Scheithauer’s result with Borcherds’ result for even signature
gives the identity (2.9).

The theory of Hecke operators for modular forms of this type was developed in [BS]. In

Theorem 5.9 of the present paper Hecke operators T (M,det(M)1/2) for matrices of the form

M =
(

p−k 0

0 p−l

)
with a prime number p, (k, l) ∈ Λ+, play a main role. If p is coprime to N , it

can be defined by the action of the corresponding double coset in the classical way, see Def.
4.1 of [BS] for details. The main difficulty lies in the extension of ρL to matrices of GL2(Q),
which only works if the componentwise reduction modulo N of the matrix in question yields
an element in GL2(Z/NZ) and if the determinant is a square modulo N . For a prime p

dividing N , the reduction modulo N of
(

p−k 0

0 p−l

)
does not lie in GL2(Z/NZ). However,

as explained in [BS], Chapter 5 ((5.1), (5.2) more specifically), taking [St2], Section 4, into
account, it is possible to define a Hecke operator by setting

(2.10) f |κ,L T (m(p−k, p−l), p−(k+l)/2) = det(m(p−k, p−l))κ/2−1
∑

γ∈Γ\Γm(p−k,p−l)Γ

f |κ,L γ.

Here, for any γ = δm(p−k, p−l)δ′ ∈ Γm(p−k, p−l)Γ we put

(2.11) ρ−1
L (γ) = ρ−1

L (δ′)ρ−1
L (m(p−k, p−l))ρ−1

L (δ)

and

ρ−1
L (m(p−k, p−l))eλ = ρ−1

L (m(p−l, p−l))ρ−1
L (m(pl−k, 1))eλ

=
g(D⊥

p )

gpl(D
⊥
p )

ep(l−k)/2λ,
(2.12)

where D⊥
p means the orthogonal complement of Dp in D.

3. The Weil representation on GL2(A)

Let (L, (·, ·)) be an even, non-degenerate lattice of type (b+, b−) with even rank m, with
dual lattice L′ and the quadratic module D = L′/L. We further define V = L ⊗ Q and let
H = O(V ) be the orthogonal group over Q attached to (V, (·, ·)). In this section we collect
some well known facts on the Weil representation of SL2(A)×H(A), which is suited for our
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purposes in this paper. Here we consider the Schrödinger model of the Weil representation
ω =

∏
p≤∞ ωp on the space S(V (A)) of Schwartz-Bruhat functions associated to the character

(3.1) ψ =
∏
p≤∞

ψp : A/Q → C×, x = (xp) 7→ ψ(x) = e2πi(−x∞+
∑

p<∞ x′
p),

where x′p ∈ Q/Z is the principal part of xp and V (A) = V ⊗A. Note that this character is the
complex conjugate of the standard additive character (see e. g. [St], [BY] and [KL], Chapter
8).

A second goal of the present section is the extension of ω to a subgroup of GL2(A) in the
spirit of the extension of the “finite” Weil representation ρL in [BS].

For µ ∈ D we define φµ ∈ S(V (Af )) with

φµ = 1µ+L̂ =
∏
p<∞

φ(µ)
p =

∏
p<∞

1µ+Lp .(3.2)

Here Lp = L ⊗ Zp, which is the p-part of L̂ = L ⊗ Ẑ with Ẑ =
∏

p<∞ Zp, and 1µ+Lp is
the characteristic function of µ + Lp. Note that there is a close relation between the finite
groups L′

p/Lp and the p-groups Dp. In fact, these groups are isomorphic. This isomorphism
additionally respects the quadratic forms of both groups see e. g. [Ze], Section 3, [St],
Remark 3.2 or [We1], Theorem 4.30. In the following, we identify these groups and use them
interchangeably. As in [BY], we consider the |D|-dimensional subspace

(3.3) SL =
⊕
µ∈D

Cφµ ⊂ S(V (Af )).

It is known that the space in (3.3) is stable under the action of the group SL2(Z) via the
Weil representation ωf (see e. g. [YY], p. 3456). Also, the L2 scalar product ⟨·, ·⟩ on
SL ⊂ S(V (Af )) simplifies to

(3.4) ⟨
∑
µ∈D

Fµφµ,
∑
µ∈D

Fµφµ⟩ =
∑
µ∈D

|Fµ|2.

Note that D can be decomposed into p-groups D =
⊕

p||D|Dp
∼=

⊕
p||D| L

′
p/Lp. For almost

all primes p - those coprime to |D| - Lp is unimodular and thus L′
p/Lp = {0+Lp}. Therefore,

we can write D ∼=
⊕

p<∞ L′
p/Lp. On the level of the space SL, this decomposition translates

to the isomorphism

(3.5) SL ∼=
⊗
p<∞

SLp , φµ 7→
⊗
p<∞

φ
(µp)
p ,

where µ =
∑

p||D| µp and φ
(µp)
p = φ

(0)
p for all primes p coprime to |D|. The local Weil

representation ωp acts on the p-part SLp of SL, where

(3.6) SLp =

{⊕
µ∈L′

p/Lp
Cφ(µ)

p , p | |D|,
Cφ(0)

p , p ∤ |D|.

We then have

ωf (γf )φµ =
⊗
p<∞

ωp(γp)φ
(µp)
p .
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According to [St], Lemma 3.4 and [BY], Proposition 2.5, the Weil representation ωp can
be described explicitly on the generators of SL2(Zp) by

ωp(n(b))φ
(µp)
p = ψp(bq(µp))φ

(µp)
p

ωp(w)φ
(µp)
p =

γp(L
′
p/Lp)

|L′
p/Lp|1/2

∑
νp∈L′

p/Lp

ψp((µp, νp))φ
(νp)
p

ωp(m(a))φ
(µp)
p = χV,p(a)φ

(a−1µp)
p ,

(3.7)

where γ(L′
p/Lp) is the local Weil index and χV,p(a) = (a, (−1)m/2|Dp|)p is the local Hilbert

symbol. Evaluating the local Hilbert symbol gives

(3.8) χV,p(a) =

(
a

|L′
p/Lp|

)
= χDp(a),

see e. g. [Se], Chapter III. These formulas imply that (see the proof Lemma 3.4 in [St])

i) the local Weil representations ωp is trivial if p is coprime to |D|,
ii) if we identify C[D] with SL via eµ 7→ φµ, then ωf coincides with the finite Weil

representation ρL in the following way

(3.9) ρL(γ) = ωf (γf ),

where γ ∈ SL2(Z) and γf ∈ SL2(Ẑ) is the projection of γ into SL2(Ẑ). Note that by
our choice of the character ψ, the relation (3.9) differs from the one in [BY], (2.7), by
conjugation.

The following lemma provides the action of ωp for the lower triangular matrix n (c) ∈ SL2(Zp):

Lemma 3.1. i) Let c ∈ Z×
p . Then

(3.10)

ωp(n (c))φ
(µp)
p =

γp(L
′
p/Lp)

|L′
p/Lp|1/2

χV,p(−c)ψp(c
−1q(µp))

∑
νp∈L′

p/Lp

ψp(c
−1q(νp))ψp(−c(µp, νp))φ

(νp)
p .

ii) Let c ∈ pZp. If L′
p/Lp is anisotropic, then

(3.11) ωp(n (c))φ
(µp)
p = φ

(µp)
p .

Proof. i): By the Bruhat decomposition (see e. g. [KL], p. 69),

n (c) = n(c−1)wn(c)m(−c).
From this we infer that by means of (3.7)

ωp(n (c))φ
(µp)
p =

γp(L
′
p/Lp)

|L′
p/Lp|1/2

χV,p(−c)ψp(c
−1q(µp))

∑
νp∈L′

p/Lp

ψp(c
−1q(νp))ψp(−c(µp, νp))φ

(νp)
p .

ii): Since c ∈ pZp and the level of Lp is p, ωp acts trivially on SLp :

ωp(n (ca−1))φ
(µp)
p = ωp(w)ωp(n(ca

−1))ωp(w
−1)φ

(µp)
p

= ωp(w)ωp(w
−1)φ

(µp)
p

= φ
(µp)
p .

For the second equation we used that ωp(n(ca
−1)) acts trivially on SLp . □
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Via the extension of ρL to a subgroup of G(Q) (see [BS] and [St2], Section 4), it is possible
to extend ωf (cf. [We], Def. 46) to the same group, into which SL2(A) can be embedded. To
explain this extension process, we need some notation. Let N =

∏r
i=1 p

ei ,

π : Ẑ →
∏
p|N

Zp

the projection onto the places p | N and

πN :
∏
p|N

Zp → Z/NZ

the composition of the canonical projection of Zpi to Z/peiZ and the application of the Chinese
remainder theorem. We further denote with

(3.12) K(p) :=
{
(M, r) ∈ Kp × (Z/NZ)× | det((πN ◦ π)(M)) ≡ r2 mod N

}
and K′ =

∏
p<∞K(p). The following group can be found in [BS], (3.2):

Q(N) = {(M, r) ∈ GL2(Z/NZ)× (Z/NZ)× | det(M) ≡ r2 mod N}.

Applied to each component of the involved matrix, we obtain a sequence of homomorphisms

K′ Π−→
∏
p|N

K(p)
ΠN−−→ Q(N),

where Π and ΠN denote the matrix valued counterparts of π and πN , respectively. Note that
we can embed SL2(Zp) and {( r 0

0 r ) | r ∈ (Zp)
×} into K(p) homomorphically by the mappings

kp 7→ (kp, 1) and ( r 0
0 r ) 7→ (( r 0

0 r ) , r). For the rest of the paper, we omit the second component
of elements of K′,K(p) or Q(N) (if possible) and use the groups Kp and K(p) interchangeably.

Definition 3.2. Let k ∈ K′. Then we define

ωf (k) =
⊗
p<∞

ωp(kp)

=
⊗
p∤N

ωp(kp)
⊗
p|N

ωp(kp)
(3.13)

with ωp(kp) = idSLp
for all primes p ∤ N and⊗

p|N

ωp(kp) = ρL(ΠN ((kp)p|N )).(3.14)

Here by (kp)p|N we mean the tuple of all components kp ∈ K(p) of k belonging to the primes
p dividing N . Combining (3.13) and (3.14) we set

(3.15) ωf (k) = ρL((ΠN ◦Π)(k)).

Note that Definition 3.2 is compatible with (3.9). For, if we take k ∈ SL2(Ẑ) as the
projection of some γ ∈ SL2(Z), we find (ΠN ◦Π)(k) = ΠN (γ) ∈ SL2(Z/NZ) and

(3.16) ωf (k) = ρL(γ)

since ρL factors through SL2(Z/NZ). As a special case, Definition 3.2 comprises the extension
of the local Weil representation ωp from SL2(Zp) to K(p):
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Definition 3.3. Assume that the level N is equal to a prime p and let kp ∈ K(p) be embedded
into K′ by ιp(kp). Then we define

(3.17) ωp(kp) = ωf (ιp(kp)) = ρL(Πp(kp)).

The following formulas for ωp will be used frequently.

Remark 3.4. Let kp ∈ Kp with det(kp) = t2 ∈ (Zp)
×. Then due to Definition 3.3 and

ρL(( r 0
0 r ) , r)eλ =

g(D)

gr(D)
eλ

for (( r 0
0 r ) , r) ∈ Q(N) (cf. [BS], (3.5)), we find

ωp(( t 0
0 t ))φ

(λp)
p = ρL(Πp ( t 0

0 t ))φ
(λp)
p

=
g(Dp)

gt(Dp)
φ
(λp)
p

= χDp(t)φ
(λp)
p

(3.18)

and

(3.19) ωp((kp, t)) = ωp(( t 0
0 t ))ωp(

(
t−1 0
0 t−1

)
kp),

where
(

t−1 0
0 t−1

)
kp is an element of SL2(Zp). For the computations (3.18) we identified t with

πp(t) and φ
(λp)
p with eλ (regarding the right-hand side of the first equation).

Finally, we need to define the local Weil representation ωp on double cosets of the form

K(p)m(p−k, p−l)K(p) where p divides the level of L. These matrices play an important role
in Theorem 5.9. Here m(p−k, p−l) ∈ Mp with (k, l) ∈ Λ+. Note that we cannot proceed
as in the definitions before since Πp is not well defined in this case. But we can mirror the
corresponding process in [BS], Chapter 5. For the definition of “finite” Weil representation
ρL on m(p−k, p−l) we refer to Section 2 or in more detail to [St2], Section 4 ((4.7)-(4.10)).

Definition 3.5. Let m(p−k, p−l) ∈ Mp with (k, l) ∈ Λ+.

i) Then we set

ωp(m(p−k, p−l))−1φ
(λp)
p = ρL(m(p−k, p−l))−1φ

(λp)
p

= ρL(m(pl, pl))−1ρL(m(pl−k, 1))−1φ
(λp)
p

= φ
(p(l−k)/2λp)
p ,

(3.20)

where we used for the last equation that according to [St2], (4.7), (4.8), ρL(m(pl, pl))

acts by multiplication with
g(D⊥

p )

g
pl
(D⊥

p )
. But, this quotient is by definition in this special

case trivial because D⊥
p is trivial.

ii) For δ = γm(p−k, p−l)γ′ ∈ K(p)m(p−k, p−l)K(p) we define

ωp(δ)
−1φ

(λp)
p = ωp(γ

′)−1ωp(m(p−k, p−l))−1ωp(γ)
−1φ

(λp)
p

= ωp(γ
′)−1ρL(m(p−k, p−l))−1ωp(γ)

−1φ
(λp)
p .

(3.21)
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Remark 3.6. The definition of ωp on K(p)m(p−k, p−l)K(p) is independent of the choice
of the representatives. This follows from [BS], Prop. 5.1, for double cosets of the form
SL2(Zp)m(p−k, p−l) SL2(Zp) and (3.16). Since the action of ωp on K(p) differs from that on
SL2(Zp) only by the action of scalar matrices, i. e. by multiplication with a character (see

Definition 3.4), we obtain the same result for double cosets of the form K(p)m(p−k, p−l)K(p).

4. The Hecke algebra H(Qp//Kp, ωp)

In this section we will describe the structure of the local vector valued spherical Hecke
algebra H(Qp//Kp, ωp) associated to the pair of groups (Qp,Kp) and the local Weil represen-
tation ωp. For each prime p we will introduce a Satake map, which allows us to understand
the structure of this Hecke algebra. For primes p ∤ |D| these Hecke algebras are isomorphic
to the classical scalar valued Hecke algebras defined by the same groups. These are well
understood thanks to the classical Satake map. If p divides |D|, the algebras H(Qp//Kp, ωp)
are considerably more complicated because ωp is non-trivial. However, under certain restric-
tions for Dp, we will define a modified Satake map, which maps H(Qp//Kp, ωp) to a simpler
algebra, whose structure can be easier determined.

The following general facts about spherical Hecke algebras can be found in many places,
among them [BK], chapter 4, [Ho] and [Mu].

Definition 4.1. Let G be a locally compact group G, K an open compact subgroup and
ρ : K → GL(V ) a representation ofK. The Hecke algebraH(G//K, ρ) of ρ-spherical functions
is the set of functions f : G→ End(V ) which

i) are compactly supported modulo K, i. e. each f vanishes outside finitely many double
cosets KgK and satisfy

ii)

f(k1gk2) = ρ(k1) ◦ f(g) ◦ ρ(k2) for all k1, k2 ∈ K and all g ∈ G.

Since each element f of H(G//K, ρ) is of the form

f(g) =

n∑
i=1

aifi(g),

where ai ∈ C and fi is an element of the subspace of functions of H(G//K, ρ), which vanish
outside KgiK, the whole algebra is generated by the functions fi. Similarly, we denote by
H(G//K) the set of functions f : G → C, which are compactly supported modulo K and
K-bi-invariant, i. e. f(k1gk2) = f(g) for all k1, k2 ∈ K and all g ∈ G. We call H(G//K) also
a spherical Hecke algebra.

It is well known that H(G//K, ρ) is an associative C-algebra with respect to convolution

(4.1) (f1 ∗ f2)(g) =
∫
G
f1(h) ◦ f2(h−1g)dh,

where dh is the standard Haar measure on G normalized by
∫
K dh = 1. Provided that G/K

is countable, we may write

(f1 ∗ f2)(g) =
∑

h∈G/K

f1(h) ◦ f2(h−1g).

In order to determine the structure of H(G//K, ρ), in view of the remarks before, it is
useful to study the space of functions in this Hecke algebra, which vanish outside a single
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double coset KgK. It can be described in terms of intertwining operators of ρ associated
with g. To state the corresponding result, we fix some notation. For g ∈ G we mean by Kg

the group gKg−1 and write ρg for the representation h 7→ ρg(h) = ρ(g−1hg) of Kg ∩K. As
usual,

HomK∩Kg(ρ, ρg) = {F : V → V | F is linear and F ◦ ρg(h) = ρ(h) ◦ F for all h ∈ K ∩Kg}.
Then we have

Lemma 4.2. Let g ∈ G. The subspace of H(G//K, ρ) consisting of functions supported on
KgK, is isomorphic to HomK∩Kg(ρ, ρg).

Proof. The assertion is well known (see e. g. [BK], Chapter 4). Nevertheless, for later
purposes, we indicate a proof by giving the maps of the claimed isomorphism (without further
explanation).

If f ∈ H(G//K, ρ) with f(g) ̸= 0 supported on KgK, then it easily checked that f(g) ∈
HomK∩Kg(ρ, ρg) (non-zero). On the other hand, if 0 ̸= F ∈ HomK∩Kg(ρ, ρg), we put
f(g) = F and f(k1gk2) = ρ(k1) ◦ f ◦ ρ(k2) and obtain thereby an element of the above stated
subspace of H(G//K, ρ). □

The following Lemma ensures that the groups Qp and Kp meet the conditions of Definition
4.1. It might be known. Since I have not found it in the literature, I state it here and add a
short proof.

Lemma 4.3. i) The group Kp is an open compact subgroup of Qp.
ii) The group Qp is a locally compact subgroup of GL2(Qp).

Proof. It is well known that GL2(Qp) is locally compact. By Lemma 8, I.3, of [Ch], it follows
that Qp is also locally compact. By [Ka], Thm. 2.15, we know that (Z×

p )
2 is an open subgroup

in Z×
p Therefore, Kp is an open subgroup in GL2(Zp), which implies that is is also closed (see

[HW], Thm. 5.5). As Qp ∩GL2(Zp) = Kp, we find that Kp is a compact subgroup of Qp. □

Note that there is analogue of the Cartan decomposition for the pair (Qp,Kp).

Lemma 4.4. The group Qp can be written as a disjoint union of Kp-double cosets:

Qp =
⋃
k≤l

k+l∈2Z

Kpm(pk, pl)Kp.

Proof. The proof is the same as for the Cartan decomposition for GL2(Qp), see e. g. [Mu],
p. 17. In the quoted proof the matrix g =

(
a b
c d

)
∈ GL2(Qp) with a ̸= 0 and |a|p ≥

max{|b|p, |c|p, |d|p} is transformed into

m(a, d− a−1bc) = k3gk4,

where k3 = n (−a−1c), k4 = n(−a−1b) ∈ Kp. If we assume that det(g) = p2xy2 and a = pks,

then d− a−1bc = p2x−ky2s−1, y, s ∈ Z×
p , and

m(pk, p2x−k) = n (−a−1c)g n(−a−1b)m(s)m(1, y2).

Therefore, all used transformation matrices are contained in Kp. We have a similar decom-
position if d ̸= 0, see [KL], p. 208.

Also, note that any two double cosets Kpg1Kp, Kpg2Kp are disjoint since otherwise the
double cosets GL2(Zp)g1GL2(Zp), GL2(Zp)g2GL2(Zp) would not be disjoint, contradicting
the Cartan decomposition for GL2(Qp). □
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We also have an analogue of the Iwasawa decomposition of GL2(Qp).

Lemma 4.5.

(4.2) Qp = MpN(Qp)Kp.

Proof. This follows immediately from the Iwasawa decomposition for GL2(Qp) by the inter-
section with Qp on both sides. □

As already noted, there are two cases to consider regarding the structure of H(Qp//Kp, ωp).
It depends on whether p divides |D| or not. In both cases we will determine a set of generators
with the help of Lemma 4.2. Afterwards, we will define a Satake map. If p divides |D|, we
will show - under the restriction that Dp is anisotropic - that H(Qp//Kp, ωp) is isomorphic
to a subalgebra of the spherical Hecke algebra H(Mp//Dp, ωp

|S
N(Zp)
Lp

), where

S
N(Zp)
Lp

= {φ ∈ SLp | ωp(n)(φ) = φ for all n ∈ N(Zp)}.

If (p, |D|) = 1, H(Qp//Kp, ωp) is isomorphic to the classical spherical Hecke algebra
H(Qp//Kp), whose structure is well known. We start with the discussion of the first mentioned
case and consider the latter case subsequently.

To describe the structure of HomKp∩Kg
p
(ωp, ρg), we need the decomposition of SLp into

irreducible submodules. This decomposition is well known, see for example [NW], Satz 2,
Satz 4 and pages 521-522. We recall those parts relevant for the next lemma. We denote with
Aut(Dp) the group of all automorphisms ε of Dp satisfying q(ε(x)) = q(x) for all x ∈ D. Let
further U be a subgroup of Aut(Dp), which is determined for all possible cases of Dp in [NW],

Section 2, and Û the dual group of U . It turns out that most of the primitive characters in Û
give rise to an irreducible representation. The definition of a primitive character can be found
on page 491 in [NW]. We have to distinguish between the two possible anisotropic quadratic
modules. For the case At

p ⊕A1
p Nobs and Wolfart proved the following decomposition of the

space SLp with respect to the Weil representation

(4.3) SLp
∼= SLp(χ1)

⊕
χ∈Û primitive

χ2 ̸=1

SLp(χ)⊕
(
SMp(1,−)⊕ SMp(t,−)

)
,

where χ1 = 1 means the trivial character and

SLp(χ) =
{
f ∈ SLp | f(εx) = χ(ε)f(x) for all x ∈ At

p ⊕A1
p and all ε ∈ U

}
,

SMp(t,−) =
{
f ∈ SMp | f(−x) = −f(x) for all x ∈ At

p

}
,

(4.4)

Mp being a p-adic lattice with M ′
p/Mp

∼= At
p. The space SMp(1,−) is defined the same way

by simply replacing t with 1. We write

(4.5) f = f1 +
∑

χ∈Û primitiv
χ2 ̸=1

fχ + f+ + f−

for an element in SLp with respect to (4.4). It is shown in [NW] that SLp(χ1) and SLp(χ2) are
isomorphic if and only if χ1 = χ2 or χ1 = χ2. The remaining quadratic modules in (4.3) are
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(pairwise) not isomorphic. The isomorphism between SLp(χ) and SLp(χ) is given explicitly
in terms of the generators of SLp(χ): A generator

(4.6) fµp(χ) =
∑
ε∈U

χ(ε)φ
ε(µp)
p

is mapped to fµp(χ), where µp is (a + b,−b) for µp = (a, b). We denote this intertwining

operator by Tχ.

4.1. The case of primes p dividing |D|.

Lemma 4.6. Let Dp be an anisotropic discriminant form and g = m(pk, pl) ∈ Qp with
(k, l) ∈ Λ+. Put ρg = (ωp)g.

i) If k < l, then the space HomKp∩Kg
p
(ωp, ρg) is generated by the map

(4.7) T (k, l) : SLp → S
N(Zp)
Lp

, φ
(µp)
p 7→ T (k, l)(φ

(µp)
p ) = φ

(p(l−k)/2µp)
p = φ(0)

p .

ii) If Dp
∼= At

p ⊕ A1
p, then SLp decomposes into the irreducible submodules SLp(χ1),

SLp(χ), SMp(1,−) and SMp(t,−). For k = l the space HomKp∩Kg
p
(ωp, ρg) is then

generated by the maps T (k, k)χ, T (k, k)χ, T (k, k)χ1, T (k, k)+ and T (k, k)− where

T (k, k)χ(f) = fχ, T (k, k)χ(f) = Tχ(fχ),

T (k, k)+(f) = f+, T (k, k)−(f) = f− and

T (k, k)χ1(f) = f1

(4.8)

and f is an element in SLp as in (4.5).

iii) If Dp
∼= At

p, then SLp decomposes into the irreducible submodules SLp(t,+) and
SLp(t,−), where these spaces are defined as in (4.4) with Mp replaced by Lp. For
k = l the space HomKp∩Kg

p
(ωp, ρg) is then generated by the two maps T (k, k)+ and

T (k, k)−, where

(4.9) T (k, k)+(f) = f+ and T (k, k)−(f) = f−.

Proof. In light of Lemma 4.4, it clearly suffices to choose g = m(pk, pl) with (k, l) ∈ Λ+.
i) First, note that

m(pk, pl)
(
a b
c d

)
m(pk, pl)−1 =

(
a bpk−l

cpl−k d

)
.

In particular, for
(
a b
c d

)
= n(pl−k) we find that n(1) is an element of Kp ∩ Kg

p. Thus, for any
F ∈ HomKp∩Kg

p
(ωp, ρg) the equation

F ◦ ωp(m(pk, pl)−1n(1)m(pk, pl)) = ωp(n(1)) ◦ F ⇐⇒ ωp(n(1)) ◦ F = F ◦ ωp(n(p
l−k))

⇐⇒ ωp(n(1)) ◦ F = F

must hold. For the last equivalence we have used that the level of Lp is p. It follows that

the image of F is a subset of S
N(Zp)
Lp

. Since the identity ωp(n(b))φ
(γ)
p = φ

(γ)
p holds for all

b ∈ Z×
p if and only if γ is isotropic and Dp anisotropic, we can conclude that S

N(Zp)
Lp

= Cφ(0)
p .

Therefore, F is a scalar multiple of the map φ
(λp)
p 7→ φ

(0)
p and has the claimed form.

ii) The decomposition of SLp into irreducible submodules is well known. For the quadratic

module At
p see for example [NW], Theorem 4. The case of the quadratic module At

p ⊕ A1
p
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is treated in [NW], Theorem 2 and Section 9, p. 521-522. In the case k = l the equation
F ◦ ρg(h) = ωp(h) ◦ F simplifies to F ◦ ωp(h) = ωp(h) ◦ F for all h ∈ Kp. Thus, F is an
intertwining operator for ωp. The structure of the space of intertwining operators can be
found in books about representation theory, cf. [JL], Chapter 11. □

In view of Lemma 4.2 and Lemma 4.6, the following corollary is immediate.

Corollary 4.7. Let p be a prime dividing |D|, Dp anisotropic and (k, l) ∈ Λ+. Then the
Hecke algebra H(Qp//Kp, ωp) is generated by the following elements:

i) For k < l

(4.10) Tk,l(k1m(pk, pl)k2) = ωp(k1) ◦ T (k, l) ◦ ωp(k2),

where Tk,l is only supported on Kpm(pk, pl)Kp. Here T (k, l) is the intertwining oper-
ator specified in Lemma 4.6, i).

ii) For k = l

(4.11) Tk,k(k1m(pk, pk)k2) = ωp(k1) ◦ T (k, k) ◦ ωp(k2),

where supp(Tk,k) = Kpm(pk, pk)Kp and T (k, k) is one of the operators

T (k, k)χ, T (k, k)χ, T (k, k)+, T (k, k)− or T (k, k)χ1

given in Lemma 4.6, ii) and iii).

The following theorem investigates the structure of the Hecke algebraH(Mp//Dp, ωp
|S

N(Zp)
Lp

)

assuming Dp is anisotropic.

Theorem 4.8. Let p be an odd prime dividing |D| and Dp anisotropic.

i) Then

ωp(m(t1, t2))φ
(0)
p =

{(
t1

|Dp|

)
φ
(0)
p , |Dp| = p,

φ
(0)
p , |Dp| = p2

= χDp(t1)φ
(0)
p

(4.12)

for all m(t1, t2) ∈ Dp.

ii) Then S
N(Zp)
Lp

is equal to Cφ(0)
p and the Hecke algebra H(Mp//Dp, ωp

|S
N(Zp)
Lp

) isomorphic

to the scalar valued Hecke algebra H(Mp//Dp).

Proof. As already mentioned in Section 2, the order of an anisotropic quadratic module Dp

is either p2 or p.
i) Let m(t1, t2) ∈ Dp with det(m(t1, t2)) = t2 ∈ (Z×

p )
2. Then by (3.19)

ωp(m(t1, t2))φ
(0)
p = ωp(m(t, t))ωp(m(t−1t1, t

−1t2))φ
(0)
p

=

(
t

|Dp|

)(
t−1t1
|Dp|

)
φ(0)
p ,

where we have used (3.8) and (3.18). The claimed result now follows.
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For ii) we first note that if Dp is anisotropic, the space S
N(Zp)
Lp

is equal to Cφ(0)
p and thus

one-dimensional. From i) we know that Dp acts via ωp on S
N(Zp)
Lp

by multiplication with the

quadratic character χDp . Consequently,

H(Mp//Dp, ωp
|S

N(Zp)
Lp

) = H(Mp//Dp, χDp),

where the latter Hecke algebra is meant in the sense of Definition 4.1 with the one-dimensional
representation ρ = χDp . The structure of the latter algebra was discussed in [Ho], Remark
5.1. It was stated there that H(Mp//Dp, χDp) is isomorphic to the usual spherical algebra
H(Mp//Dp). To state this isomorphism explicitly, we specify a set of generators for the
former algebra. It is generated by elements of the form

Tk,l(m(t1, t2)m(pk, pl)m(s1, s2)) = χDp(m(t1, t2)) ◦ T (k, l) ◦ χDp(m(s1, s2))

with
T (k, l) = 1Dpm(pk,pl)Dp

id
S
N(Zp)
Lp

.

The isomorphism is then given by

(4.13) IχDp
: Tk,l = 1Dpm(pk,pl)Dp

· id
S
N(Zp)
Lp

7→ χDpTk,l,

where have extended χDp trivially to a quasi-character on the whole group Mp (see also
[Ho]). □

We now define the before mentioned Satake map to further clarify the structure ofH(Qp//Kp, ωp)
and to connect it to the algebra H(Mp//Dp):

S : H(Qp//Kp, ωp) → H(Mp//Dp, ωp|SN(Zp)
Lp

),

T 7→

m 7→ δ(m)1/2
∑

n∈N(Qp)/N(Zp)

T (mn)
|SN(Zp)

Lp

 .
(4.14)

Remark 4.9. i) Note that this definition is analogous to the one given by Herzig ([He])

over a field in characteristic p. The modulus character δ
(
m1 0
0 m2

)
=

∣∣∣m1
m2

∣∣∣
p
is also

part of the classical Satake map (see e. g. [De], Chap. 8), where it ensures that
the image of the Satake map is invariant under the natural action of the Weyl group.
Herzig omitted the modulus character in his definition of the Satake map as it does
not produce the invariance under the action of the Weyl group. Nevertheless, we keep
it in the definition of S since it indeed does share the property of invariance under
the Weyl group.

ii) With the same arguments as after the statement of Theorem 1.2 and as in its proof
(Step 0) in [He], it can be proved that S is a well defined map. To prove that S is
a C-algebra homomorphism all calculations of Step 2 in the proof of Theorem 1.2 in
[He] remain valid in our situation.

As is shown in Lemma 4.6 and Corollary 4.7, the space of maps in H(Qp//Kp, ωp) with

support equal to Kpm(pk, pk)Kp is two-dimensional or of higher dimension if ωp is considered
on the whole space SLp . If we restrict ourselves to an irreducible subspace of SLp , the before
mentioned space is one-dimensional. On the one hand, this condition would guarantee that
the Satake map (4.14) is indeed an isomorphism (without it, (4.14) is not even injective, as
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is easily checked). On the other hand, it is to restrictive for our purposes. So, in order to
obtain an isomorphism between H(Qp//Kp, ωp) and a subalgebra of H(Mp//Dp, ωp

|S
N(Zp)
Lp

)

via (4.14), we restrict H(Qp//Kp, ωp) to a subalgebra where the space of maps supported on

the double coset Kpm(pk, pk)Kp is replaced with the subspace generated by the operator

Tk(k1m(pk, pl)k2) = ωp(k1) ◦ T (k) ◦ ωp(k2) with

T (k) =

T
χ1(k, k) +

∑
χ∈Û primitiv

χ2 ̸=1

Tχ(k, k) + T+(k, k) + T−(k, k), for At
p ⊕A1

p

T+(k, k) + T−(k, k), for At
p

= idSLp
.

(4.15)

It will turn out that Tk is compatible with the Hecke operator T (m(p−k, p−k)), see Theorem
5.9, which is the rationale for this choice.

For the next theorem we fix some notation:
Let N(Mp) be the normalizer of Mp in Qp. Then the groupW = N(Mp)/Mp is called Weyl
group. It is isomorphic to the symmetric group S2 and acts on Mp by changing the entries
t1, t2 of a matrix m(t1, t2).

Let (k, l) ∈ Λ+. By H+(Qp//Kp, ωp) we mean the subalgebra of H(Qp//Kp, ωp) generated
by T with

(4.16) T =

{
Tk,l, k < l,

Tk, k = l

as specified in the first line of (4.15) and Corollary 4.7. In order to state results for all genera-
tors of H+(Qp//Kp, ωp) in subsequent sections we often write Tk,k instead of Tk. Furthermore,
let

τk = 1Dpm(pk,pk)Dp
· idSLp

,

τk,l = 1Dpm(pk,pl)Dp
· idSLp

+1Dpm(pl,pk)Dp
· idSLp

.
(4.17)

Then we denote by H(Mp//Dp, ωp
|S

N(Zp)
Lp

)W the subalgebra of H(Mp//Dp, ωp
|S

N(Zp)
Lp

) gener-

ated by τk,l and τk, which is nothing else but the subalgebra of all elements ofH(Mp//Dp, ωp
|S

N(Zp)
Lp

)

invariant under the Weyl group W .

Theorem 4.10. Let p be a prime dividing |D| and Dp anisotropic.
Then the Hecke algebras H+(Qp//Kp, ωp) and H(Mp//Dp, ωp

|S
N(Zp)
Lp

)W are isomorphic.

Proof. In view of Remark 4.9, it suffices to prove that S is injective and surjective. To this
end, we compute S(T ) for a non-zero T ∈ H+(Qp//Kp, ωp). By Corollary 4.7, we may assume
that T is either Tk,l or Tk with (k, l) ∈ Λ+.

We first consider the case k < l. Thus, T = Tk,l ∈ H+(Qp//Kp, ωp) with supp(Tk,l) =

Kpm(pk, pl)Kp. Let m(pi, pj) ∈ Mp for arbitrary i, j ∈ Z with i ≤ j and i+ j a square. One

can prove (see [De], Lemma 8.24) that m(pi, pj)N(Qp) ∩ Kpm(pk, pl)Kp ̸= ∅ if and only if
i, j ≥ k and i+ j = k + l. Therefore,

(4.18) supp(S(Tk,l)) ⊂ {Dpm(pν , pk+l−ν)Dp | ν = k, . . . , l}.
Cartan decompositions and explicit representatives of Qp/Zp:



20 OLIVER STEIN

Let 0 ̸= x = prs with s ∈ Z×
p . We distinguish two cases:

1. k + l − 2ν − r ≥ 0:
First note that this inequality is always fulfilled for ν = k for all r ≤ 0. Employing the

Cartan decomposition produces for all ν

(4.19) m(pν , pk+l−ν)n(prs) = n (pk+l−2ν−rs−1)m(pν+r, pk+l−ν−r)m(s)n(−p−rs−1)w.

It follows that the matrix m(pν , pk+l−ν)n(prs) lies in the double coset Kpm(pk, pl)Kp if and

only if r = k − ν. Thus, for ν = k + 1, . . . , l the sum
∑

x∈Qp/Zp
Tk,l(m(pν , pk+l−ν)n(x)) runs

over all elements of the form x = pk−νs, s traversing the set

U(ν) =

{
ν−k−1∑
i=0

xip
i | x0 ∈ (Z/pZ)× and xi ∈ Z/pZ, i = 1, . . . , ν − k − 1

}
.

For ν = k this sum consists of a single summand corresponding to x = 0 ∈ Qp/Zp.
2. k + l − 2ν − r < 0:
We find

(4.20) m(pν , pk+l−ν)n(prs) = n(p2ν+r−k−ls)m(pν , pk+l−ν).

As the latter inequality is never satisfied for ν = k for any r < 0, m(pν , pk+l−ν)n(prs) is
contained in Kpm(pk, pl)Kp if and only if ν = l. The latter equation can be written as

(4.21) m(pl, pk)n(prs) = n(pl−k+rs)w−1m(pk, pl)w.

As k − l − r < 0 is equivalent to r > k − l, the sum
∑

x∈Qp/Zp
Tk,l(m(pl, pk)n(x)) runs over

all x ∈ Qp/Zp with |x|p < l− k. Assuming a representation of the form x = prs, we may put
r = k − l and write∑

x∈Qp/Zp

Tk,l(m(pl, pk)n(x)) =
∑

s∈U(l)0

Tk,l(m(pl, pk)n(pk−ls)),

where

U(l)0 =

{
l−k−1∑
i=1

xip
i | xi ∈ Z/pZ, i = 1, . . . , l − k − 1

}
.

Note that |x|p < 1 for all x ∈ U(l)0.
Consequently, U(l) ∪ U(l)0 contains all principal parts x in Qp/Zp with νp(x) ≥ k − l. As

already pointed out, these are all x, for which Tk,l(m(pl, pk)n(x)) is non-zero.

Computation of (STk,l)(m(pν , pk+l−ν)):

By means of the decompositions (4.19) and (4.21), we are now able to compute (STk,l)(m(pν , pk+l−ν))
explicitly for any ν ∈ {k, . . . , l}. Since the computations for ν = l are more complicated, we
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treat them separately afterwards. Thus, let ν ∈ {k, . . . , l − 1}. Then

∑
x∈Qp/Zp

Tk,l

(
m(pν , pk+l−ν)n(x)

)
|SN(Zp)

Lp

=


∑

s∈U(ν) Tk,l
(
m(pν , pk+l−ν)n(pk−νs)

)
|SN(Zp)

Lp

, ν ̸= k,

Tk,l(m(pk, pl))
|SN(Zp)

Lp

, ν = k

=


∑

s∈U(ν) ωp(n (pl−νs−1)) ◦ Tk,l(m(pk, pl)) ◦ ωp(m(s)n(−pν−ks−1)w)
|SN(Zp)

Lp

, ν ̸= k,

Tk,l(m(pk, pl))
|SN(Zp)

Lp

, ν = k.

(4.22)

Since the level of Lp is p, the last expression in (4.22) simplifies to∑
s∈U(ν)

Tk,l(m(pk, pl)) ◦ ωp (m(s)w)
|SN(Zp)

Lp

.

With the help of the explicit formulas (3.7) of ωp and Lemma 4.6, we obtain

(STk,l)(m(pν , pk+l−ν))φ(0)
p

= δ(m(pν , pk+l−ν))1/2
γp(Dp)

|Dp|1/2
∑
γ∈Dp

∑
s∈U(ν)

(
s

|Dp|

)
Tk,l(m(pk, pl))φ(s−1γ)

p

=

{
0, if |Dp| = p,

δ(m(pν , pk+l−ν))1/2γp(Dp)|Dp|1/2|U(ν)|φ(0)
p , if |Dp| = p2.

In view of the discussion above, for ν = l we have

∑
x∈Qp/Zp

Tk,l(m(pl, pk)n(x))φ(0)
p =

∑
s∈U(l)

ωp(n (s−1))Tk,l(m(pk, pl))ωp(m(s)w)φ(0)
p +

∑
s∈U(l)0

ωp(w
−1)Tk,l(m(pk, pl))ωp(w)φ

(0)
p .

(4.23)

With the help of Lemma 3.1 and the calculations before, it can be verified that the first
summand of the above expression is equal to(

−1

|Dp|

)
γp(Dp)

2
∑

s∈U(l)

∑
νp∈Dp

ψp(sq(νp))φ
(νp)
p

=
∑

νp∈Dp

|U(l)0|
∑

x0∈(Z/pZ)×
e(x0q(νp))

φ
(νp)
p ,

(4.24)
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where we exploited for the last equation the fact that level of Lp is p and that γp(Dp)
2 =

(
−1
|Dp|

)
(see e. g. [Ze], p. 73). Similarly, the second summand can be evaluated to be

(4.25) |U(l)0|
∑

νp∈Dp

φ
(νp)
p .

Replacing the right-hand side of (4.23) with (4.24) and (4.25), yields∑
x∈Qp/Zp

Tk,l(m(pl, pk)n(x))φ(0)
p

= |U(l)0|
∑

νp∈Dp

 ∑
x∈Z/pZ

e(xq(νp))

φ
(νp)
p

= |U(l)0|pφ(0)
p .

Here we have used the standard formula for the exponential sum
∑

x∈Z/pZ e(xq(νp)). This

leads us finally to

(STk,l)(m(t1, t2)) = δ(m(t1, t2))
1/2×

1Dpm(pk,pl)Dp
id

S
N(Zp)
Lp

, m(t1, t2) = m(pk, pl),

δpγp(Dp)|Dp|1/2|U(ν)|1Dpm(pν ,pk+l−ν)Dp
id

S
N(Zp)
Lp

, m(t1, t2) = m(pν , pk+l−ν), ν ̸= k, l

pl−k
1Dpm(pl,pk)Dp

id
S
N(Zp)
Lp

, m(t1, t2) = m(pl, pk),

0, otherwise,

= p
1
2
(l−k)×

1Dpm(pk,pl)Dp
id

S
N(Zp)
Lp

, m(t1, t2) = m(pk, pl),

δpγp(Dp)1Dpm(pν ,pk+l−ν)Dp
id

S
N(Zp)
Lp

, m(t1, t2) = m(pν , pk+l−ν), ν ̸= k, l

1Dpm(pl,pk)Dp
id

S
N(Zp)
Lp

, m(t1, t2) = m(pl, pk),

0, otherwise,

(4.26)

where δp = 1 if |Dp| = p2 and zero otherwise.

If k = l, it follows from (4.18) that supp(STk) = Dpm(pk, pk)Dp. The same thoughts as for
k < l after equation (4.19) yield

(STk(m(pk, pk)) = Tk(m(pk, pk))
|SN(Zp)

Lp

= 1Dpm(pk,pk)Dp
id

S
N(Zp)
Lp

.

From the above follows immediately that S is injective. For the surjectivity it suffices to proof
that τk and τk,l are contained in the image of S. This can be done almost verbatim as in [De],
p. 212. □

Remark 4.11. Combining Theorem 4.10, Theorem 4.8 and the isomorphism

(4.27) 1Dpm(pk,pl)Dp
7→ 1m(pk,pl)Dp

,
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which maps H(Mp//Dp) to the group algebra C[Mp/Dp], shows that H+(Qp//Kp, ωp) is
isomorphic to C[Mp/Dp]

W . This recovers essentially the classical result of Satake (see [Sa]).
Also by Satake, this group algebra can be identified with a polynomial algebra.

Whenever p divides |D| and we deal with elements Tk,l, Tk or τk,l, τk of either of the Hecke

algebras H+(Qp//Kp, ωp) or H(Mp//Dp, ωp
|S

N(Zp)
Lp

)W , we mean the above stated and assume

that Dp is anisotropic.

4.2. The case of primes p not dividing |D|. We denote withH(Mp//Dp)
W the subalgebra

of all elements of H(Mp//Dp) invariant under the Weyl group W . In this case it easily seen
that H(Qp//Kp, ωp) is isomorphic to H(Mp//Dp)

W .

Theorem 4.12. Let p be a prime coprime to |D|. Then the Hecke algebras H(Qp//Kp, ωp)
and H(Mp//Dp)

W are isomorphic as algebras.

Proof. By Lemma 3.4 in [St], we know that Lp is unimodular and ωp is the trivial represen-

tation on the space SLp = Cφ(0)
p . A basis of H(Qp//Kp, ωp) is then given by{
1Kpm(pk,pl)Kp

· idSLp
| (k, l) ∈ Λ+

}
.

The composition of

F : H(Qp//Kp, ωp) → H(Qp//Kp), 1Kpm(pk,pl)Kp
· idSLp

7→ 1Kpm(pk,pl)Kp

with the classical Satake map (see e. g. [De] or [Ca]) gives the desired isomorphism. □

5. Vector valued automorphic forms and vector valued modular forms

In his thesis [We], Werner assigned to each vector valued modular form a vector valued
automorphic form on GL2(A). He also provided an adelic Hecke operator, which corresponds
to the Hecke operator T

(
p 0
0 1

)
on a space of vector valued modular forms. In this section we

continue this work and embed it into a more general framework of vector valued automorphic
forms. More specifically, we

(1) describe the image Aκ(ωf ) of Sκ(ρL) under Werner’s adelization map and establish
that it is an Hilbert space isomorphism (see Theorem 5.5).

(2) define an action of the whole Hecke algebra H(Qp//Kp, ωp) on Aκ(ωf ).

However, we stick to the Hecke operators given in [BS] instead of using Werner’s Hecke
operators. As a consequence, we have to work with the extension of the Weil representation
as given in [St2], Section 4, Section 2 and its adelic counterpart in Section 3 of the present
paper.

Instead of working with GL2(A), we consider the restricted product

(5.1) G(A) =
∏′

p≤∞
Qp =

(gp) ∈
∏
p≤∞

Qp | gp ∈ Kp for almost all primes p

 ,

where

Q∞ = {M ∈ GL2(R) | det(M) ∈ (R×)2}.
Note that K∞ = SO(2) is a subgroup of Q∞. The group G(Q) can be embedded diagonally as
a discrete subgroup of G(A). An important decomposition for GL2(A), which will be needed



24 OLIVER STEIN

for the definition of automorphic forms, is the strong approximation. An analogous result
holds for G(A).

Theorem 5.1. Let K =
∏

p<∞Kp ⊂ GL2(Af ). Then

(5.2) G(A) = G(Q)(Q∞ ×K).

More generally, let U =
∏

p<∞ Up be any open compact subgroup of K with the property that

det(U) = (Ẑ×)2. Then

G(Af ) = G(Q) · U and

G(A) = G(Q)(Q∞ × U).
(5.3)

Proof. A proof for the classical result for GL2(A) can be found in many places, among them
in [KL], Section 5.2 and Section 6.3. One can check that the proofs of Proposition 5.10,
Proposition 6.5 and Theorem 6.8 of [KL] carry over to the analogous statements in our
setting. □

In [KL] and [Ge] functions f : GL2(Q) \GL2(A) → C with certain properties were related
to (scalar valued) elliptic modular forms. Here we consider G(Q)-invariant and SL-valued
functions

F : G(Q) \ G(A) → SL
with a similar goal. With respect to the basis {φµ}µ∈D of SL such a function can be written
in the form F =

∑
µ∈D Fµφµ. In view of (3.5) and (3.6), we will only consider factorizable

functions, that is, only those SL-valued functions F which possess a decomposition of the
form

F (γ(g∞ × gf )) =
⊗
p<∞

Fp(g∞, gp),

where

Fp(g∞, gp) =

{∑
λ∈Dp

Fλ,∞(g∞)Fλ,p(gp)φ
(λ)
p , p | |D|,

φ
(0)
p , p ∤ |D|.

Using the bilinearity of the tensor product, we have

Fµ(γ(g∞ × gf )) = ⟨
∑

(λp)p∈
⊕

p<∞ Dp

∏
p<∞

Fλp,∞(g∞)Fλp,p(gp)
⊗
p<∞

φ
(λp)
p , φµ⟩.

Note that F is well defined since any occurring sum, product or tensor product is finite.
We denote the space of all these functions F : G(Q) \ G(A) → SL with FL. Associated to

the Weil representation ωf on the space SL we define

L2(G(Q) \ G(A), ωf ) =

F ∈ FL

∣∣∣∣∣∣∣∣
i) Fµ is measurable for all µ ∈ D
ii) F (zg) = ωf (zf )

−1F (g) for all
z = zQ(z∞ × zf ) ∈ Z(A)

iii)
∫
G(Q)\G(A) ∥F (g)∥

2dg <∞


and

L2
0(ωf )

=

{
F ∈ L2(G(Q) \ G(A), ωf )

∣∣∣∣∣
∫
N(Q)\N(A)

Fµ(ng)dn = 0 for all µ ∈ D, a. e. g ∈ G(A)

}
.

(5.4)
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Here by

i) ∥F (g)∥2 we mean ⟨F (g), F (g)⟩ as defined in (3.4),
ii) G(R) = Z(R) \ G(R), where Z(R) is the center of G(R) and R stands for any com-

mutative ring with 1,
iii) dg and dn we mean the Haar measure on G(Q) \G(A) and N(Q) \N(A), respectively.

Measurability for each component function Fµ is meant in the sense of Proposition 7.15 of
[KL]: Fµ can be written as a product

∏
p<∞ Fµ,p(gp), each component satisfying:

i) Fµ,p : Qp → C is measurable for all p ≤ ∞
ii) Fµ,p|Kp

= 1 for all p /∈ S, where S is a finite set of places.

The above integrals over G(Q) \ G(A) and N(Q) \N(A) are explained in [KL], Proposition
7.43 and Proposition 12.2, and meant in the very same way. Also note that the integral in
iii) of L2(G(Q) \ G(A), ωf ) is well defined as F satisfies ii) and the Weil representation ωf

is unitary with respect to ⟨·, ·⟩. The spaces L2(G(Q)\G(A), ωf ) and L2
0(ωf ) are subspaces of

the spaces L2(G(Q)\G(A), ωf ) and L2
0(ω), respectively, which are defined the same way but

without the assumption that the functions are factorizable.
Werner assigned in [We], Def. 49, a C[D]-valued Function Ff on G(Q)\G(A) to a cusp form

f ∈ Sκ(ρL). We adopt his definition to our setting, which basically means that we replace
the group ring with the isomorphic space SL.

Definition 5.2. Let f ∈ Sκ(ρL) and g ∈ G(A) with g = γ(g∞×k), where γ ∈ G(Q), g∞ ∈ Q∞
and k ∈ K. Then in terms of this decomposition we define a map A

(5.5) f 7→ A (f) = Ff with Ff (g) = ωf (k)
−1j(g∞, i)

−κf(g∞i).

Lemma 50 in [We] shows that the definition of Ff in (5.5) is independent of the decompo-
sition of g. Moreover, from its definition it follows immediately that Ff is G(Q)-invariant.

Proposition 5.3. Let f ∈ Sκ(ρL). Then the assigned function Ff on G(Q) \ G(A) lies in the
space L2(G(Q) \ G(A), ωf ).

Proof. i) By definition, the µ-th component of Ff is given by

(Ff )µ(g) = ⟨ωf (k)
−1j(g∞, i)

−κf(g∞i), φ
(µ)⟩

= j(g∞, i)
−κ

∑
λ∈D

fλ(g∞i)
∏
p<∞

⟨ωp(kp)
−1φ

(λp)
p , φ

(µp)
p ⟩,(5.6)

where g = γ(g∞ × k). It is well known that j(g∞, i)
−κfλ(g∞i) is measurable on Q∞

as fλ is a scalar valued cusp form for Γ(N) (cf. [Ge], §2, for this case). As a result of
the discussion in Chapter 3, we have that ωp is trivial for all p ∤ N . For p | N we find
by means of the explicit formulas of ωp (see (3.7) or [BY], p. 645, or [St], Lemma 3.4)
that ωp is trivial on the subgroup

Kp(p
ordp(D)) =

{(
a b
c d

)
∈ Kp |

(
a b
c d

)
≡ ( 1 0

0 1 ) mod pordp(D)Zp

}
and factors thereby through Kp/Kp(p

ordp(D)) for each p dividing N . Since

Kp(p
ordp(D)) has as compact subgroup a finite measure, ⟨ωp(kp)

−1φ
µp
p , φ

µp
p ⟩ is a mea-

surable function for all primes p. We then obtain that (Ff )µ is measurable in the
above stated sense.
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ii) Let z = zQ(z∞ × zf ) ∈ Z(A). Then it follows immediately from the definition of Ff

that Ff (zg) = ωf (zf )
−1Ff (g).

iii) It can be verified that Proposition 7.43 and the discussion before of [KL] is also valid
in our situation. We have to check that all steps of the proof are still working if we
replace the involved groups by the corresponding groups in our setting. This is in fact
the case, some steps are even easier since we only have to deal with matrices whose
determinant is a square. As a result, we may replace the integral over G(Q) \ G(A)
with the corresponding integral over DK∞ × K. Here D is a fundamental domain
for Γ \ H interpreted as subset of SL2(R) (not to be confused with the discriminant
group). Following the proof of Proposition 12.15 in [KL], we find for Ff∫

G(Q)\G(A)
∥Ff (g)∥2dg =

∫
DK∞

∫
K
∥Ff (g × k)∥2dkdg

=

∫
D
∥j(g∞, i)−κf(g∞i)∥2dg,

(5.7)

where we have used that ωf is unitary with respect to ⟨·, ·⟩ and that the Haar measure
on Qp is normalized to be equal to one on Kp for p ≤ ∞. If we identify g∞i with an
element τ ∈ Γ \H, the last integral in (5.7) becomes∫

Γ\H
∥f(τ)∥2 Im(τ)κ

dxdy

y2
,

which is the Petersson norm of f ∈ Sκ(ρL) and therefore <∞. Thus, the L2-norm of
Ff is finite.

□

Lemma 5.4. Let f ∈ Sκ(ρL) and Ff the assigned automorphic form given by (5.5). Then∫
N(Q)\N(A)

Fµ(ng)dn = 0

for almost every g ∈ G(A) and all µ ∈ D.

Proof. The proof proceeds along the lines of the one of Proposition 12.2 in [KL]. Let n =
n(xQ)(n(x∞) × n(xf )) ∈ N(A) and g = γ(g∞ × gf ) ∈ G(A). Then the definition of Ff and
ωf yields

Fµ(ng) = ⟨j(g∞, i)−κj(n(x∞), g∞i)
−κωf (gf )

−1ωf (n(xf ))
−1f(n(x∞)(g∞i)), φµ⟩

= j(g∞, i)
−κj(n(x∞), g∞i)

−κ
∑
ν∈D

ψf (−xfq(ν))fν(n(x∞)(g∞i))⟨ωf (gf )
−1φν , φµ⟩.

As suggested in [KL], Prop. 12.2., we calculate more generally for r ∈ Q∫
N(Q)\N(A)

Fµ(n(x)g)ψ(rx)dx

= j(g∞, i)
−κ

∑
ν∈D

⟨ωf (gf )
−1φν , φµ⟩×∫

N(Z)\(N(R)×N(Ẑ))
ψf (−xfq(ν))fν(n(x∞)(g∞i))ψ∞(rx∞)ψf (rxf )dxfdx∞.

(5.8)
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We can write the integral in the last expression as∫ 1

0
fν(n(x∞)(g∞i))ψ∞(rx∞)

∫
N(Ẑ)

ψf ((r − q(ν))xf )dxfdx∞,

where the integral over N(Ẑ) is one if and only if r ∈ Z + q(ν). For such r (note that

ψ∞(x∞) = e(−x∞)), taking into account that
∫ 1
0 fν(x∞+τ)e(−rx∞)dx∞ = e(rRe(τ))c(ν, r),

where c(ν, r) is the Fourier coefficient of f with respect to (ν, r), we finally obtain∫
N(Q)\N(A)

Fµ(n(x)g)ψ(rx)dx = j(g∞, i)
−κ

∑
ν∈D

⟨ωf (gf )
−1φν , φµ⟩e(rRe(τ))c(ν, r),

where τ = g∞i. Since f is a cusp form, we have that for r = 0 all coefficients c(ν, r) vanish.
This gives the desired result. □

The next theorem characterizes the image of Sκ(ρL) under the map A in (5.5) more closely.

Theorem 5.5. Let Aκ(ωf ) be the space of functions F ∈ L2
0(ωf ) satisfying

i) F (gk) = ωf (k)
−1F (g) for all k ∈ K and all g ∈ G(A)

ii) F (g
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
) = eiκθF (g) for all θ ∈ [0, 2π) and all g ∈ G(A)

iii) All the components Fµ of F , considered as a function of Q∞ alone, satisfy the differ-
ential equation LFµ = 0. Here L is the differential operator given by

(5.9) L = e−2iθ

(
−2iy

∂

∂x
+ 2y

∂

∂y
+ i

∂

∂θ

)
with respect to the coordinates referring to the decomposition

(5.10) g∞ = z∞

(
1 x
0 1

)(
y
1
2 0

0 y−
1
2

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
of g∞ ∈ Q∞.

Then the map A defines an isometry from Sκ(ρL) onto Aκ(ωf ).

Proof. This theorem is well known for scalar valued automorphic forms, see e. g. [Ge] or
[KL]. Most parts of its proof can be settled with reference to the proof of its scalar valued
analogue.

Let f ∈ Sκ(ρL). It follows from Proposition 5.3 and Lemma 5.4 that Ff ∈ L2
0(ωf ). The

assertion in i) is proved in [We], Theorem 51, the one in ii) results from a straightforward
calculation analogous to the scalar valued case (see [KL], Proposition 12.5). For iii) note that

Fµ(g∞ × 1f ) = yk/2eikθfµ(x + iy) if we decompose g∞ ∈ Q∞ according to (5.10). The same
proof as in [KL], applied to each component Fµ, establishes the result using the assumption
f ∈ Sκ(ρL).

Kudla [Ku] defined a map that assigns to a vector valued function F on G(A) a vector
valued function fF on H:

(5.11) F 7→ fF , fF (τ) = j(gτ , i)
κF (gτ × 1f ),

where gτ =

(
1 x
0 1

)(
y
1
2 0

0 y−
1
2

)
and τ = gτ i = x + iy ∈ H. It is easily seen that this map is

well-defined and that it is the inverse map of A (see [KL], Prop. 12.5, for the corresponding
scalar valued result). It remains to show that fF is an element of Sκ(ρL) for any F ∈ Aκ(ωf ).
Kudla proved that fF transforms like a vector valued modular form with respect to ωf if
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F ∈ Aκ(ωf ) ([Ku], Lemma 1.1). Since each component of F satisfies the differential equation
in iii), it follows that each component of fF is holomorphic on the upper half plane (see [KL],
Prop. 12.5). In view of these two properties, fF possess a Fourier expansion, see [Br1], p. 18.
By Proposition 5.3 we know that the Petersson norm of fF coincides with the L2 norm of F ,
it is in particular finite. One can prove in the same way as in Prop. 3.39 of [KL] that fF is
an element of Sκ(ρL). Thus, the map in (5.5) is surjective and an isometry. □

5.1. The action of H(Qp//Kp, ωp) on Aκ(ωf ). The goal of this subsection is to define an
action of G(A) via the Hecke algebra H+(Qp//Kp, ωp) (or H(Qp//Kp, ωp) if (p, |D|) = 1) on
the space Aκ(ωf ) of vector valued automorphic forms. Whenever we write H+(Qp//Kp, ωp)
we tacitly also mean H(Qp//Kp, ωp) in the case (p, |D|) = 1 and don’t mention the latter in
the following. SinceH+(Qp//Kp, ωp) acts only on the p-component of an element F ∈ Aκ(ωf ),
we need to complement the contribution of H+(Qp//Kp, ωp) with suitable operators for the
other places. The envisaged action will be defined in such a way that it is compatible with the
action of Hecke operators on Sκ(ρL). Werner proposed in [We], Chapter 6, the definition of an
adelic vector valued Hecke operator mimicking Gelbart’s approach of an adelic scalar valued
Hecke operator. Our approach is more conceptual and transfers the action of the classical
spherical Hecke algebra (as for instance in [BP] or [Mu1], § 6), to the vector valued setting.

Definition 5.6. Let p ∈ Z be a fixed prime, g = γ(g∞×gf ) ∈ G(A) and Tp ∈ H+(Qp//Kp, ωp).
Then we define for a fixed h ∈ G(A)

(5.12) RTp(h) : FL → FL, F 7→ RTp(h)F =
⊗
q<∞

R
Tp
q (hq)Fq

with

(5.13) R
Tp
q (hq)Fq(gq) =

{
Fq(g∞, gqhq), q ̸= p

Tp(hp)(Fp(g∞, gp)), q = p.

The operator

(5.14) T Tp : Aκ(ωf ) → Aκ(ωf ), T Tp(F )(g) =
∑

xp∈Qp/Kp

RTp(ιp(xp))F (gιp(xp))

can be interpreted as a vector valued analogue of the construction in [BP] or [Mu1]. For
the sake of better readability, we omit the argument g∞ in the subsequent calculations and
assume tacitly that the local functions also depend on g∞.

Remark 5.7. i) If we decompose T Tp into into its components, we obtain

(5.15) T Tp(F )(g) =
⊗
q ̸=p

Fq(gg)⊗

 ∑
xp∈Qp/Kp

Tp(xp)Fp(gpxp)

 .

Since Tp ∈ H+(Qp//Kp, ωp) has compact support, the sum in (5.15) is finite. It can be
verified by means of Theorem 5.5, i), and Definition 4.1, ii), that (5.15) and therefore
(5.14) is independent of the representative xp ∈ Qp/Kp and is thus well-defined. We
will show later in the paper that T Tp(F ) is indeed contained in Aκ(ωf ).

ii) Let p be a prime, Tp, T
′
p ∈ H+(Qp//Kp, ωp). Then by a straightforward calculation,

using (5.15) and the bilinearity of the tensor product, we obtain

(5.16) T xTp+yT ′
p(F )(g) = xT Tp(F )(g) + yT T ′

p(F )(g)
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for all F ∈ Aκ(ωf ), all g ∈ G(A) and all x, y ∈ C.
There is also a compatibility relation regarding convolution:

T Tp∗T ′
p(F )(g) =

⊗
q ̸=p

Fq(gq)⊗

 ∑
xp∈Qp/Kp

 ∑
yp∈Qp/Kp

Tp(yp) ◦ T ′
p(y

−1
p xp)

 (Fp(gpxp))

 .

Since both sums over Qp/Kp are finite, we can change their order and obtain

⊗
q ̸=p

Fq(gq)⊗

 ∑
yp∈Qp/Kp

 ∑
xp∈Qp/Kp

Tp(yp) ◦ T ′
p(y

−1
p xp)(Fp(gpxp))


=

⊗
q ̸=p

Fq(gq)⊗

 ∑
yp∈Qp/Kp

Tp(yp)

 ∑
zp∈Qp/Kp

T ′
p(zp)(Fp(gpypzp))


= (T Tp ◦ T T ′

p)(F )(g).

For the second equation, we replaced for each yp the sum over xp by a sum over a new
variable zp by means of the substitution xp = ypzp.

iii) Relation to classical adelic Hecke operators: If the lattice L is unimodular, the discriminant
groupD is trivial, which implies that the finite Weil representation ρL is trivial. Consequently,
following Section 3, the local Weil representation ωp is trivial for each prime p. This in turn
implies (cf. Theorem 4.12) that H+(Qp//Kp, ωp) is isomorphic to the classical spherical Hecke
algebra H(Qp//Kp). Let Ff ∈ Aκ(ωf ) with

Ff (γ(g∞ × k)) = j(g∞, i)
−κf0(g∞i)ωf (k)

−1φ0

= j(g∞, i)
−κf0(g∞i)φ0

and Tp = tp · idSLp
with tp = 1Kpm(pk,pl)Kp

. Then by Definition 5.6,

T Tp(Ff )(γ(g∞ × k)) =
⊗
q ̸=p

φ(0)
q ⊗

 ∑
xp∈Qp/Kp

Tp(xp)(Ff )p(kpxp)


=

⊗
q ̸=p

φ(0)
q ⊗

 ∑
xp∈Qp/Kp

Tp(xp)(j(g∞, i)
−κf0(g∞i)φ0)


Taking the definition of Tp into account, we have

Tp(xp)(j(g∞, i)
−κf0(g∞i)φ0) = τp(xp)j(g∞, i)

−κf0(g∞i)φ
(0)
p

and consequently the right-hand side of the equation above becomes∑
xp∈Qp/Kp

τp(xp)j(g∞, i)
−κf0(g∞i)φ0

such that

⟨T Tp(Ff )(γ(g∞ × k)), φ0⟩ =
∑

xp∈Qp/Kp

τp(xp)Ff0(gιp(xp))

=

∫
Qp

τp(xp)Ff0(gιp(xp))dxp,



30 OLIVER STEIN

where Ff0(γ(g∞ × k)) = j(g∞, i)
−κf0(g∞i) is the automorphic form associated to the scalar

valued elliptic modular form f0 ∈ Sκ(Γ) of weight κ for Γ. The latter integral is the adelic
Hecke operator attached to tp ∈ H(Qp//Kp). It is important to notice that we only obtain

those adelic Hecke operators where the underlying matrix m(pk, pl) has a square as determi-
nant.

Lemma 5.8. Let p be a prime, Tk,l ∈ H+(Qp//Kp, ωp) and H+(Qp//Kp, ωp) as given in

Corollary 4.7 and Theorem 4.12, respectively and F ∈ Aκ(ωf ). Then T Tk,l

i) is G(Q)-invariant and
ii) fulfills

T Tk,l(F )(gk) = ωf (k)
−1T Tk,l(F )(g) for all k ∈ K and all g ∈ G(A),

T Tk,l(F )(zg) = ωf (zf )
−1T Tk,l(F )(g) for all z ∈ Z(A) and all g ∈ G(A).

Proof. i) Since F ∈ Aκ(ωf ) is G(Q)-invariant, the same holds for T Tk,l(F ) as can be
seen by means of (5.15).

ii) By Theorem 5.5, i), and Definition 4.1, ii) we have

T Tk,l(F )(gk) =
⊗
q ̸=p

Fq(gqkq)⊗

 ∑
xp∈Qp/Kp

Tk,l(xp)(Fp(gpkpxp))


=

⊗
q ̸=p

ωq(kq)
−1Fq(gq)⊗

 ∑
yp∈Qp/Kp

Tk,l(k
−1
p yp)(Fp(gpyp))


=


⊗

q ̸=p ωq(kq)
−1Fq(gq)⊗ ωp(kp)

−1
(∑

yp∈Qp/Kp
Tk,l(yp)(Fp(gpyp))

)
, if p||D|⊗

q ̸=p ωq(kq)
−1Fq(gq)⊗

(∑
yp∈Qp/Kp

Tk,l(yp)(Fp(gpyp))
)
, if p ∤ |D|

= ωf (k)
−1T Tk,l(F )(g).

For the second equation we used the substitution yp = kpxp. This settles the first
claimed identity.

For the second identity we make use of the fact that F ∈ Aκ(ωf ) and that ωp(zp) acts
for zp ∈ Z(Zp) on SLp by multiplication with a scalar (cf. (3.18)), which commutes
with the operator Tk,l. Let z = zQ(z∞ × zf ) with zf = (zq)q<∞ ∈ K. Then

T Tk,l(F )(zg) =
⊗
q ̸=p

ωq(zq)
−1Fq(gq)⊗

 ∑
xp∈Qp/Kp

Tk,l(xp)(ωp(zp)
−1Fp(gpxp))


= ωf (zf )

−1T Tk,l(F )(g).

□

Let p be a prime, (k, l) ∈ Λ+, Tk,l ∈ H+(Qp//Kp, ωp) and H+(Qp//Kp, ωp) as in Corollary

4.7 and Theorem 4.12, respectively and T Tk,l as in Definition 5.6. We now show that the map
A commutes with the Hecke operators T Tk,l and T (m(p−k, p−l)) on both sides and thereby
confirm that T Tk,l indeed preserves Aκ(ωf ). For a prime p ∤ |D| this result was in principle
proved by Werner (cf. [We], Theorem 53), but not in our framework and not for a general
Hecke operator T (m(p−k, p−l)).
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Theorem 5.9. Let p be a prime and (k, l) ∈ Λ+. If p divides |D|, let Tk,l ∈ H+(Qp//Kp, ωp)
as in Corollary 4.7. If (p, |D|) = 1, let Tk,l = 1Kpm(pk,pl)Kp

idSLp
∈ H(Qp//Kp, ωp) be as in

Theorem 4.12. Further, let T Tk,l be as in Definition 5.6 and
T (m(p−k, p−l)) the Hecke operator as defined in Section 2. Then for any f ∈ Sκ(ρL) we have

(5.17) T Tk,l(Ff ) = F
p(k+l)(κ2 −1)T (m(p−k,p−l))f

,

where Ff is the automorphic form related to f via the map A .

Proof. We know from Lemma 5.8 that for any g = γ(g∞ × k) ∈ G(A) we have

T Tk,l(Ff )(γ(g∞ × k)) = T Tk,l(Ff )((g∞ × 1f )(1× k))

= ωf (k)
−1T Tk,l(Ff )(g∞ × 1f ).

The same holds for F
p(k+l)(κ2 −1)T (m(p−k,p−l))f

since it is an element of Aκ(ωf ). Hence, it suffices

to prove (5.17) for g = g∞ × 1f .
The proof is an adaptation of the one of Lemma 3.7 in [Ge]. We have

T Tk,l(Ff )(g) =
∑

xp∈Qp/Kp

RTk,l(ιp(xp))Ff (gιp(xp))

=
∑

xp∈Kpm(pk,pl)Kp/Kp

RTk,l(ιp(xp))Ff (gιp(xp)),
(5.18)

where the last equation is due to Remark 5.7, i), and the fact that Tk,l is supported on the

double coset Kpm(pk, pl)Kp. Following an idea of Gelbart, we set for xp ∈ Kpm(pk, pl)Kp/Kp

γ = (xp, . . . , xp, . . . ) ∈ G(Q),

k(xp) = (x−1
p , . . . , x−1

p , 1p, x
−1
p , . . . ) ∈ K,

x−1
p ∈ Q∞,

where the 1p in k(xp) is at p-th place. With these notations it is easily verified that

ιp(xp) = γ(x−1
p × k(xp)).

Therefore, the right-hand side of (5.18) becomes∑
xp∈Kpm(pk,pl)Kp/Kp

RTk,l(ιp(xp))Ff (γ(x
−1
p g∞ × k(xp))).

Using the fact that Ff ∈ Aκ(ωf ) and equation (5.6) subsequently, we find that the latter
expression is equal to

∑
xp∈Kpm(pk,pl)Kp/Kp

RTk,l(ιp(xp))ωf (k(xp))
−1Ff (x

−1
p g∞ × 1f )

=
∑

xp∈Kpm(pk,pl)KpKp

j(x−1
p g∞, i)

−κ
∑
λ∈D

fλ(x
−1
p g∞i)R

Tk,l(ιp(xp))(ωf (k(xp))
−1φλ).
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Decomposing RTk,l and ωf into its local factors, yields∑
xp∈Kpm(pk,pl)Kp/Kp

j(x−1
p g∞, i)

−κ×

∑
λ∈D

fλ(x
−1
p g∞i)

⊗
q ̸=p

ωq(x
−1
p )−1φ

(λq)
q ⊗ Tk,l(xp)(ωp(1p)

−1φ
(λp)
p ).

(5.19)

To further simplify the right-hand side of (5.19), we evaluate ωq(x
−1
p )−1 and Tk,l(xp) on a

concrete set of representatives xp. To this end, we first assume k < l. It is easily seen that
Lemma 13.4 of [KL] carries over to our situation. Keeping this in mind, we can conclude that{

xs,b = m(pk, pk)
(

ps b

0 pl−k−s

)
| s = 1, . . . l − k − 1, b ∈ (Z/psZ)×

}
∪
{
xb = m(pk, pk)

(
pl−k b
0 1

)
| b ∈ Z/pl−kZ

}
∪
{
m(pk, pk)m(1, pl−k)

}(5.20)

is a set of representatives of Kpm(pk, pl)Kp/Kp for any prime p. We now distinguish the cases
p | |D| and p ∤ |D|. The latter is easier and will be postponed to the end of the proof.

The decomposition

(5.21) x−1
s,b =

(
r −b
t ps

)
m(p−k, p−l)n (−pl−k−st) ∈ Γm(p−k, p−l)Γ

with rps + bt = 1 and

(5.22) x−1
b = wm(p−k, p−l)w−1n(−b) ∈ Γm(p−k, p−l)Γ

can easily be verified. Since Γ ⊂ Kq for all primes q, this decomposition can also be interpreted

as decomposition in Kqm(p−k, p−l)Kq for all primes q. If q ̸= p, we may utilize Definition 3.4
and obtain

ωq(x
−1
s,b )

−1 = ωq(n (−pl−k−st))−1ωq(m(p−k, p−l))−1ωq(
(

r −b
t ps

)
)−1,

ωq(x
−1
b )−1 = ωq(w

−1n(−b))−1ωq(m(p−k, p−l))−1ωq(w)
−1.

(5.23)

By Definition 4.1, we further have

Tk,l(xs,b) = ωp(n (−pl−k−st)−1) ◦ Tk,l(m(pk, pl)) ◦ ωp(
(

r −b
t ps

)−1
),

Tk,l(xb) = ωp((w
−1n(−b))−1) ◦ Tk,l(m(pk, pl)) ◦ ωp(w

−1).
(5.24)

Following the proof of Theorem 4.8, i), we obtain

(5.25) ωq(m(p−k, p−l))−1φ
(µq)
q =

g(Dq)

gpk(Dq)
φ
(p(l−k)/2µq)
q =

g(Dq)

gpl(Dq)
φ
(p(l−k)/2µq)
q ,

where for the last equation we have used that pk+l is a square and the last equation of (3.18).
Moreover, comparing (4.7) with (3.20), it becomes apparent that the identity

Tk,l(m(pk, pl))φ
(µp)
p = ωp(m(p−k, p−l))−1φ

(µp)
p

holds. Replacing ω−1
q (xp) and Tk,l(xp) in (5.19) with the expressions calculated before and

piecing together the local Weil representations, we arrive at

(5.26) ωf (m(p−k, p−l))−1φ(λ) =
g(D⊥

p )

gpl(D
⊥
p )
φ(p(l−k)/2λ)
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and

(5.27) T Tk,l(F )(g∞ × 1f ) =
∑

xp∈Kpm(pk,pl)Kp/Kp

j(x−1
p g∞, i)

−κ
∑
λ∈D

fλ(x
−1
p g∞i)ωf (x

−1
p )−1φ(λ).

On the other hand, it is well known that

{x−1
s,b | s = 1, . . . l − k − 1, b ∈ (Z/psZ)×} ∪ {x−1

b | b ∈ Z/pl−kZ} ∪ {m(pk, pl)−1}

is a set of representatives of Γ\Γm(p−k, p−l)Γ. In view of (5.21) and (5.22) we find

ρL(x
−1
s,b )

−1 = ρL(n (−pl−k−st))−1ρL(m(p−k, p−l))−1ρL(
(

r −b
t ps

)
)−1,

ρL(x
−1
b )−1 = ρL(w

−1n(−b))−1ρL(m(p−k, p−l))−1ρL(w)
−1,

where ρL(m(p−k, p−l))−1eλ =
g(D⊥

p )

g
pl
(D⊥

p )
ep(l−k)/2λ for all primes by (2.12) or [St2], (4.10).

Thus, taking (5.26) and (3.9) into account, we find that the right-hand side of (5.27) equals

j(g∞, i)
−k

∑
x∈Γ\Γm(p−k,p−l)Γ

j(x, g∞i)
−k

∑
λ∈D

fλ(x(g∞i))ρL(x)
−1eλ

= F(p2l)1−k/2T (m(p−k,p−l))f (g∞ × 1f ).

For k = l the set Kpm(pk, pk)Kp/Kp consists only of the element m(pk, pk). Following the
steps made before for the case k < l, one finds

T Tk,k(F )(g∞ × 1f ) =
g(D⊥

p )

gpk(D
⊥
p )
j(g∞, i)

−κ
∑
λ∈D

fλ(g∞i)φ
(λ)

=
g(D⊥

p )

gpk(D
⊥
p )
Ff (g∞ × 1f ).

On the other hand, the Hecke operator T (m(p−k, p−k)) acts just by multiplication with
g(D⊥

p )

g
pk

(D⊥
p )

, and once again the desired result follows.

The proof for p ∤ |D| starts again with (5.19). Let Tk,l = 1Kpm(pk,pk)Kp
· idSLp

Then, since

SLp = Cφ(0)
p and ωp is trivial,

Tk,l(xp)(ωp(1p)
−1φ(0)

p ) = Tk,l(m(pk, pl))φ(0)
p

= φ(0)
p .

Therefore, ⊗
q ̸=p

ωq(x
−1
p )−1φ

(λq)
q ⊗ Tk,l(xp)(ωp(1p)

−1φ(0)
p ) = ωf (x

−1
p )−1φ(λ).

By means of (5.25) and (5.26) and the decompositions of x−1
p above, the identity (5.17) follows

as

ρL(m(p−k, p−l))−1eλ =
g(D)

glp(D)
eλ

(cf. [St2], (4.10) and note that D(pl) = D if (p, |D|) = 1). □
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Remark 5.10. i) The identity (5.17) can be rephrased with the help of the isomorphism
A . Let F ∈ Aκ(ωf ) with the associated modular form fF ∈ Sκ(ρL) and fT Tk,l (F )

the

modular form corresponding to T Tk,l(F ). Then (5.17) is equivalent to

(5.28) fT Tk,l (F )
= p(k+l)(κ/2−1)T (m(p−k, p−l))(fF ).

ii) It is also an immediate but important consequence of Theorem 5.9 that f ∈ Sκ(ρL) is
a common eigenform for the Hecke operators T (m(p−k, p−l)) for alle primes p and all
(k, l) ∈ Λ+ if and only if the associated automorphic form Ff is a common eigenform

for the operators T Tk,l for all primes p and all generators Tk,l ∈ H+(Qp//Kp, ωp)
(H(Qp//Kp, ωp) if p and |D| are coprime). Remark 5.7, ii), allows us to extend this
statement to the whole Hecke algebra H+(Qp//Kp, ωp) (and H(Qp//Kp, ωp)). Thus,

T T (Ff ) = λFf ,p(T )Ff

for all T ∈ H+(Qp//Kp, ωp) (and H(Qp//Kp, ωp)) if and only if f ∈ Sκ(ρL) is a

common Eigenform for all Hecke operators T (m(p−k, p−l)). As in the classical scalar
valued theory, we may then conclude that the map

λF,p : H+(Qp//Kp, ωp) → C, T 7→ λF,p(T ),

associated to an eigenform F ∈ Aκ(ωf ) defines a C- algebra homomorphism.
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