ON VECTOR VALUED AUTOMORPHIC FORMS FOR THE WEIL
REPRESENTATION

OLIVER STEIN

ABSTRACT. We develop a theory of vector valued automorphic forms associated to the Weil
representation wy and corresponding to vector valued modular forms transforming with the
“finite” Weil representation pr. For each prime p we determine the structure of a vector
valued spherical Hecke algebra depending on wy, which acts on the space of automorphic
forms.

1. INTRODUCTION

Automorphic forms can be seen as a generalization of modular forms. They play a key role
in defining (automorphic) L-functions and are thereby a vital part of the Langlands program.
For all major types of modular forms a theory of automorphic forms has been developed,
including the action of some suitable Hecke algebra. As a consequence, a standard L-function
associated to common eigenform in terms of its Satake parameters can be defined. The
present paper is the first part of two articles which address the task of defining a standard
L-function associated to a vector valued modular form transforming according to the Weil
representation. This “finite” Weil representation is defined in terms of an even integral lattice
L and the associated discriminant group L’/L, where L’ is the dual lattice of L. In the setting
of the present paper it is a representation of SLy(Z/NZ) on the group ring C[L’/L], where N
means the level of L.

This kind of modular forms plays an important role in many recent papers. The weakly
holomorphic forms of this type serve as input to a singular theta lift, which maps them to
meromorphic modular forms on orthogonal groups whose zeroes and poles are supported
on special divisors and which possess an infinite product expansion. This theta lift is the
celebrated Borcherds lift ([Bo], [Brl]), which has many applications in geometry, algebra and
in the theory of Lie algebras. For instance, it is an interesting and widely studied problem to
classify reflective automorphic forms and thereby reflective lattices and Kac-Moody algebras
(see e. g. [Schl] and [Wa]). Most of the classical theory of modular forms has been established
for these modular forms over the past years (see e. g. [Brl], [Br2], [St1] or [Mue]). In [BS],
the foundations of a Hecke theory were laid. In particular, a Hecke operator T’ ("82 (1)) for m
dividing |L’/L| is defined by the action of the double coset SLa(Z) (7’52 0) SLy(Z).

In his thesis [We], Werner introduced a generalized version of the Hecke operators defined
in [BS]. Most notably, these operators depend on a matrix (7} ), where m is coprime to N
and is not necessarily a square (modulo V). Their construction is based on the extension of
the “finite” Weil representation to the group GL2(Z/NZ) on a larger representation space
X, where C[L'/L] can be realized as an embedding into X. As a consequence, the classical
space of vector valued modular forms (as usually considered in the literature and in the
present paper) is a subspace of the considered vector valued modular forms for the extended
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Weil representation, which is not fixed by Werner’s Hecke operators (see [We|, p. 19, for
details). Also, first steps towards a theory of vector valued automorphic forms corresponding
to these more general vector valued modular forms were undertaken by Werner: he defined
automorphic forms for the (extended) Weil representation, however without specifying the
space these forms belong to. Additionally, for a prime p coprime to N and not a square modulo
N, Werner introduced an adelic Hecke operator. His definition is analogous to Gelbart’s
presentation of the scalar valued adelic Hecke operator (cf. [Ge], § 3, B, more specifically,
Lemma 3.7) but rather ad-hoc. It may be interpreted as the convolution of a suitable vector
valued characteristic function of the double coset GLa(Z,) (§ 5 ) GL2(Z,) and a vector valued
automorphic form. The convolution in this case is based on the concept of the Bochner
integral. Finally, in [We|, Theorem 53, it is proved that the adelic Hecke operator corresponds
to the Hecke operator T’ (g (1)) mentioned before. Yet, to the best of my knowledge, so far a
rigorous theory of vector valued automorphic forms does not exist. This motivates the main
objectives of the present paper

i) to develop a theory of vector valued automorphic forms corresponding to vector valued
modular forms for the finite Weil representation along the lines of [Ge], § 3 A, or [KL],
Section 12.1-12.4.
ii) to determine the structure of a fitting local vector valued spherical Hecke algebra and
iii) to study its action on the space of automorphic forms by means of Hecke operators
also defined by convolution and tailored to our setting.

pk

0 p
k+1 € 2Z. For p dividing the level of L these operators are a slight extension of the Hecke
operators T’ (”52 0) for m dividing the level of the lattice L in [BS]. This extension is specified
in [St2].

It is important to stress that our results do not hold in full generality, in particular not for

all lattices L:

These adelic Hecke operators correspond to Hecke operators T' ( ‘El ) for any prime p and

i) We only consider lattices L of even signature, which implies that we restrict ourselves
to vector valued modular forms of integral weight on the group SLo(Z). Nevertheless,
it seems reasonable that our theory could be extended to odd signature and modular
forms of half integral weight on the metaplectic cover of SLy(Z).

ii) To determine the structure of the local vector valued Hecke algebras, we assume that
the discriminant group L'/L is anisotropic. It should be possible to remove this
assumption. Without it, the structure of the involved Hecke algebras would be more
complicated and the Satake map in Theorem 4.10 is more difficult to calculate. To
obtain a smooth theory of adelic Hecke operators as in the present paper one would
have to choose appropriate subalgebras.

iii) The Hecke operators in [BS] are parametrized by matrices whose determinant is either
a square or a square modulo the level of L. This is similar to the situation of the
classical half-integral weight modular forms. As one of our goals is to establish the
compatibility between the adelic Hecke operators in this paper and the ones on vector

—k
valued modular forms, we restrict ourselves to operators T’ (p 0 p(,)l > with k+1 € 2Z.

It might be possible to extend our results to Hecke operators where p is a square
modulo the level of L and k41 is not even. In this case the definition of the operators

T (P;k p9 . ) are covered by [BS], the definition of the generators of the involved Hecke
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algebras and the adelic Hecke operators should be the same as in the present paper
and Theorem 5.9 is likely to carry over to this case as well.

The second article in this series of papers then deals with the definition of a standard
L-function for these vector valued modular forms and studies its analytic properties.

The paper at hand should be seen as the starting point for a more comprehensive study
on vector valued automorphic forms. For one, vector valued modular forms for the Weil
representation enjoy relations to scalar valued elliptic modular forms for T'o(N) (cf. [Sch]),
N the level of the lattice L (see Section 2 for details), and to Jacobi forms of lattice index
(see e. g. [Wa]). For both of these types of modular forms exists a well established theory of
automorphic forms (see e. g. [Ge] and [Mul]). It would be interesting to study how exactly
the vector valued automorphic forms are related to the elliptic automorphic forms and the
Jacobi automorphic forms.

Automorphic forms are closely connected to automorphic representations (cf. [Ge], Section
5). It should be worthwhile to investigate whether a similar theory can be build in the case
of vector valued modular forms, and if so, what relations there are.

Let us describe the content of the paper in more detail. To this end, let (L,(+,-)) be an
even lattice of even rank m and type (b",b”) with (even) signature sig(L) = bt — b~ and
level N. Associated to the bilinear form (-,-) there is a quadratic form ¢. The modulo 1
reduction of (-,-) and ¢ defines a bilinear form and a quadratic form, respectively, on the
discriminant group D = L’/L. The Weil representation py, is a representation of I' = SLo(Z)
on the group ring C[D]. As usual, we denote with Z, the ring of p-adic integers. As will be
explained later in the paper, pr, is isomorphic to a finite dimensional subrepresentation of the
Weil representation wy = @), wp (originally defined by Weil [Wei]) of SLy(Z) on a space

Sy, (isomorphic to C[D]). Here Z is defined by [1,<c0 Zp- We have the relation

pr(v) = wr(vf)

for all 4 € I', where 7y is the projection of ~ into SLy(Z) (see e. g. [YY], p. 3456). Based on
this relation and the extension process of pr, to a subgroup of GL2(Q) in [BS], Section 3, we
transfer this process to the extension of w; to some subgroup of GLa(Af), where Ay means
the finite adeles. For the details see Chapter 3.

For k € Z, a vector valued modular form of weight x and type py, is a holomorphic function
f:H — C[D], which satisfies

flyr) = (er +d)"prL(v) f(7)
ab

for all v = ( a d) € I' and all 7 in the complex upper half plane H, and is holomorphic at
the cusp co. We denote the space of all such functions with M, (pr) and write Sk (pr) for the
subspace of cusp forms. Now let A be the ring of adeles, G(Q) a subgroup of GL2(Q)" and

G(A) = H/ Qp =1 (9p) € H 9y | gp € K, for almost all primes p p ,

p<oo p<oo

where Q,, and IC,, is a subgroup of GL2(Q,) and GL2(Z,), respectively. We assign to f above
a function Fy : G(Q) \ G(A) — S, by means of strong approximation for the group G(A). For

9 = 90(goo X k) we put
Fr(g) = wy(k) ™ 5(goos 1) ™" f(goot)-
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Here gg € G(Q), goo € Qoo € GL3 (R) and k € K = [1)<oo Kp (see (2.1) for the definitions
of the groups above). In Proposition 5.3 and Lemma 5.4 we will show that F' is a cuspidal
vector valued automorphic form of type wy, which can be seen as a vector valued analogue of
a scalar valued cuspidal automorphic form. Moreover, Theorem 5.5 states that space of these
functions, satisfying further properties, is isomorphic to Sk(pr). We denote this space with
Ay (wy). The inverse map can also be given explicitly: For F' € A, (wy) it can be proven that
fr, specified by

7= fr(7) = j(gr, 1) F(gr x 1)
yjm) and 7 = g,i = x + iy € H, is indeed an element of Sk(pr). Note

with g, = (59) (¥,
that the definition of F has already occurred in the work of Werner ([We]). The function
fr can be found in Kudla’s paper [Ku]. However, as far as I know, a theory of vector valued
automorphic forms (as outlined above) has not yet appeared in the literature.

It is well known that for each prime p the spherical Hecke algebra H(GL2(Q))// GL2(Z,))
of locally constant, compactly supported and complex-valued functions, which additionally
satisfy

f(k1gk2) = f(9)

for all ki, ko € GL2(Z,,) and all g € GL2(Q)), acts on the space of scalar valued automorphic
forms. This action is compatible with the action of Hecke operators on the space of cusp forms
(see for example [BP], [Ge] or [KL]). In this paper we define for each prime p a spherical Hecke
algebra H(Q)p//KCp, wp) of type wy as follows: Let L, = L ® Z, and Sr, the representation
space as above, but associated to the p-adic lattice L,. Note that S = ®p<oo St, (see
Chapter 3 for details). Then H(Q,//Kp,wp) consists of all locally constant and compactly
supported functions f: Q, — Sr,, which satisfy

f(k1gka) = wp(k1) o f(g) o wp(ka2)

for all k1,ks € Kp and all g € Q). Hecke algebras of this type are well known and studied in
the literature ([BK], [Ho], [He]). A “tool” to investigate the structure of Hecke algebras (for a
pair of groups (G, K) with suitable properties), vector valued or not, is the Satake map (see
[Sa] or [Cal), whose image is a Hecke algebra easier to understand. Under the assumption
that Lj,/L, is anisotropic, we determine a set of generators of H(Q,//K;,wp) and connect
it to a scalar valued Hecke algebra by means of a variant of the classical Satake map (see
(4.14)), which we adopt from [He] and which is suitable in our situation. Both cases, p||D]|
and p 1 |D|, are treated. In the first instance, the structure of H(Q,//K,,w,) is way more
complicated than in the second one as the Weil representation w, is non-trivial. We obtain
for a subalgebra H*(Q,//K,,w,) the following theorem (see Thm. 4.10 and Section 2 and
Subsection 4.1 for the details):

Theorem 1.1. Let p be a prime dividing |D| and the p-group D, of D anisotropic. Further,
let My, Dy, and N(Zp) be as in (2.1) and W the usual Weyl group. Then the Hecke algebras
HT(Qp//Kp,wp) and H(M,/ /Dy, w, N(Zp>)w are isomorphic, where S]L\;(Zp) is subspace of

St,, which is invariant under the action of N(Zy) via the Weil representation.

If p is coprime to |D|, the Weil representation wy, is trivial and we essentially recover the
classical result for GLg (see Theorem 4.12).

Subsequently, we define an action of H(Q,//Kp,wp) on A, (wys), which can be interpreted
as vector valued analogue of the versions in [BP] or [Mul]. Under the assumption that the
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lattice L is unimodular, our adelic Hecke operators are closely related to the classical scalar
valued adelic Hecke operators (see Remark 5.7, iii), for details). However, Werner’s adelic
Hecke operator and the ones in this paper can not be compared without further work since

i) the Hecke operator in this paper is defined in terms of all primes p and not only for
those with p ¢ |L'/L|,

ii) the Hecke operator in this paper is defined by the action of a local Hecke algebra
while Werner’s definition adopts Gelbart’s construction without involving the action
of a Hecke algebra,

iii) the Hecke operator in this paper is only defined in terms of matrices of GL2(Q),) whose
determinant is a square and not for the remaining matrices of GL2(Q)).

As is common in the literature on automorphic forms, we show in Theorem 5.9 that this
action is compatible with the action of Hecke operators on Sy (pr). More precisely:

Theorem 1.2. Let p be a prime and (k,1) € Ay. If p divides |D|, let Ty; € HT(Qp//Kp, wp)
as in Corollary 4.7. If (p,|D|) = 1, let Tiy = Lic,mpk phk, ids,, € H(Qp//Kp,wp) be as in
Theorem 4.12 (]].Kpm(pk phk, being the characteristic function of the double coset Kpym(pF, pHKC,).
Further, let TTrl be the adelic Hecke operator as in Definition 5.6 and

T(m(p~*,p™")) the Hecke operator as defined in Section 2. Then for any f € S.(pr) we have

T,
(1.1) T HUES) = F0et0(5 -0 pm(pk p-1)) 7
where Fy is the automorphic form related to f via the adelization map </ as mentioned above.

This result resembles the corresponding classical statement as e. g. in [Ge|, Lemma 3.7 or
Prop. 13.6 in [KL].

2. PRELIMINARIES ON THE “FINITE” WEIL REPRESENTATION, VECTOR VALUED MODULAR
FORMS AND SOME NOTATION

In this section we provide some notation used throughout the paper and briefly summarize
some facts on lattices, discriminant forms and the “finite” Weil representation. We also recall
the definition of vector valued modular forms for the Weil representation and some related
theory relevant for the present paper.

As usual, we let e(z), z € C, be the abbreviation for ™. For any prime p € Z by Q,
we mean the field of p-adic numbers and by Z, its ring of p-adic integers; | - |, is the p-adic
absolute value and ord,(-) the p-adic valuation of Q,. We write A for the adele ring and A*
for the idele group. By A; we mean the set of finite adeles.

The following matrix groups appear frequently in the paper.

G(R) = {M € GLy(R) | det(M) € (R*)?} for any commutative ring R with 1,
N(Qp) ={(§1) | € Qp} and N(Zp) accordingly,

Qp = g(@p)7
GV k=6,
My= (M = (3 0) € GLy(Qy) | det(M) € (@)} and,

D, = M, NK,.
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To ensure a more readable exposition, we use abbreviations for certain elements of these
groups:

n(c)=(9), n®)=(§1), m(s)=(5,5), mlti,t) = () andw=(%4).

The symbol ¢, occurs in some places of the paper: For x, € Q) let ¢,(xp) = (0g)g<o0 € G(A)
with aq = 1, for ¢ # p and «;,, = z;, where 1, means the unit matrix in Q,. Moreover, we
will make frequently use of the following subsets of Z?:

A={(k1)€Z*|k,1>0andk+1€2Z} and
Ay ={(k,)) €A |k <1}

Finally, as usual, we write H = {7 € C | Im(7) > 0} for the complex upper half plane, let ()
be the Legendre symbol and use 14 as a symbol for the characteristic function of the set A.

Let L be a lattice of rank m equipped with a symmetric Z-valued bilinear form (-,-) such
that the associated quadratic form

1
Q(x) = 5(%,1‘), rzeL,

takes values in Z. We assume that m is even, L is non-degenerate and denote its type by
(bT,b7) and its signature b* — b~ by sig(L). Note that sig(L) is also even. We stick with
these assumptions on L for the rest of this paper unless we state it otherwise. Further, let

L''={zeV=L®Q|(x,y)€Z forall yeL}

be the dual lattice of L. Since L C L, the elementary divisor theorem implies that L'/L is
a finite group. We denote this group by D. The modulo 1 reduction of both, the bilinear
form (-,-) and the associated quadratic form, defines a Q/Z-valued bilinear form (-,-) with
corresponding Q/Z-valued quadratic form on D. We call D combined with (-, -) a discriminant
form, discriminant group or a quadratic module. We call it anisotropic, if ¢(x) = 0 holds only
for p = 0.

It is well known that any discriminant form of odd order can be decomposed into a direct
sum of quadratic modules of the form

ta?

An anisotropic quadratic module of odd order consists of p-groups D), which can either be
written as AL or as a direct sum Al & Al. For further details we refer to [BEF].

The “finite” Weil representation py, is a representation of I' = SLy(Z) on the group ring
C[D]. We denote the standard basis of C[D] by {ex}rep. On the standard generators

(2.2) S:(? _01>, T:(é D

of I' pr, is given by
pr(T)ex := e(q(N))en,
(2.3) pr(S)ey = e(—sig(L)/8) Z e(— (11, \))ey.

1/2
D ey

We denote by NN the level of the lattice L. It is the smallest positive integer such that
Ng(\) € Z for all A € L. One can prove that the Weil representation py, is trivial on T'(N),
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the principal congruence subgroup of level N. This can for example be deduced from [Sch],
Prop. 4.2. Therefore, py, factors over the finite group

I/T(N) 2 SLy(Z/NZ).

For the rest of this paper we suppose that N is odd.
We now define vector valued modular forms of type pr,. With respect to the standard basis
of C[D] a function f : H — C[D] can be written in the form

F) =3 hes
AeD
The following operator generalises the usual Petersson slash operator to the space of all those
functions. For k € Z we define

(24) (f e V() = 3y, 1) "pr(M) (1),
where
(7, 7) = det(y) " (er + d)

is the usual automorphy factor if v = (2%) € GL3 (R).

A holomorphic function f : H — C[D] is called a vector valued modular form of weight
x and type pr for T'if f |, v = f for all v € T, and if f is holomorphic at the cusp oo.
Here the last condition means that all Fourier coefficients ¢(A,n) of f with n < 0 vanish. If
in addition ¢(\,n) with n = 0 vanish, we call the corresponding modular form a cusp form.
We denote by M, (pr) the space of all such modular forms, by S.(pr) the subspace of cusp
forms. For more details see e.g. [Brl] or [BS].

The Petersson scalar product on Sy (pr) is given by

(2.5) <ﬂm:4wwmﬂvwmwww>

where 7 = z + ity and
_dz dy

y2

du(r)

denotes the hyperbolic volume element and

(2.6) <Z a,\eA,Zb,\eA> = ZaAK.

xeD AED AeD

is the standard scalar product on C[D)].
Let d an integer. By gq4(D) we denote the Gauss sum

(2.7) ga(D) =) e(dg()

AeD

and we set g(D) = g1(D). Since fractions of these Gauss sums are of some relevance in this
paper, we gather some facts on the sums g4(D) and quotients thereof.

Lemma 2.1. i) The Gauss sums gq4(D) satisfy the properties
9-d(D) = ga(D)
9a(D & D') = ga(D)ga(D')
ng‘(D> = gd(D)7
where r € Z is square in (Z/NZ)*.
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ii) If d is coprime to |D|, we have

(2.8) i((%)) _ (;) . ((d— l)ogidity(D)) |

If |D| is odd, the right-hand side of (2.8) simplifies to the quadratic character

(2.9) w@=(5)-

One way to proof equation (2.8) is by the action of the finite Weil represntation on matrices
v €T withy = (29) mod N. McGraw, [McG], Lemma 4.6, and Scheithauer, [Sch], Prop.
4.2, calculated the Weil representation of such matrices 7 leading to identity (2.8). As for
equation (2.9), Borcherds in [Bol], Theorem 5.4, gave also a formula for the action of pz, on
these matrices . His formula is more general since it includes the case of discriminant forms
of odd signature. Comparing Scheithauer’s result with Borcherds’ result for even signature
gives the identity (2.9).

The theory of Hecke operators for modular forms of this type was developed in [BS]. In
Theorem 5.9 of the present paper Hecke operators T'(M, det(M)'/?) for matrices of the form

M = (p;)k pgl) with a prime number p, (k,[) € A4, play a main role. If p is coprime to N, it

can be defined by the action of the corresponding double coset in the classical way, see Def.
4.1 of [BS] for details. The main difficulty lies in the extension of p;, to matrices of GL2(Q),
which only works if the componentwise reduction modulo N of the matrix in question yields
an element in GL2(Z/NZ) and if the determinant is a square modulo N. For a prime p

dividing N, the reduction modulo N of (p;k p?l) does not lie in GL2(Z/NZ). However,

as explained in [BS], Chapter 5 ((5.1), (5.2) more specifically), taking [St2], Section 4, into
account, it is possible to define a Hecke operator by setting

(2.10)  f |ez T(mp~*,p"),p~ *H072) = det(m(p~*,p~"))"* ! > f o -
yeM\I'm(p=F,p=H)T

Here, for any v = ém(p~*,p~")§" € I'm(p™, p~")T" we put

(2.11) prt(v) = pr (o1 (mp*,p7)) ' (0)
and

pr (mp~" p)ex = pp (m(p~",p7"))pL (m(P 5, 1))ex
(2.12) _9(Dy)

= ———¢ (-k)/2
gy (D) 7N

where D;- means the orthogonal complement of D, in D.

3. THE WEIL REPRESENTATION ON GLg(A)

Let (L, (-,-)) be an even, non-degenerate lattice of type (b*,b~) with even rank m, with
dual lattice L' and the quadratic module D = L'/L. We further define V = L ® Q and let
H = O(V) be the orthogonal group over Q attached to (V,(-,-)). In this section we collect
some well known facts on the Weil representation of SLa(A) x H(A), which is suited for our
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purposes in this paper. Here we consider the Schrédinger model of the Weil representation
w = [],<o wp on the space S(V(A)) of Schwartz-Bruhat functions associated to the character

(3.1) =] vp: A/Q = C*, 2= (2) = t(x) = 7T p<o )
p<oo
where ), € Q/Z is the principal part of x;, and V/(A) = V®A. Note that this character is the
complex conjugate of the standard additive character (see e. g. [St], [BY] and [KL], Chapter
8).
A second goal of the present section is the extension of w to a subgroup of GLy(A) in the

spirit of the extension of the “finite” Weil representation pr, in [BS].
For p € D we define ¢, € S(V(Ay)) with

(3.2) on="T,1= 19" =TI turr.-
p<oo p<oo

Here L, = L ® Z,, which is the p-part of L =L®7Z with Z = Hp<oo Ly, and 147, is
the characteristic function of p + L,. Note that there is a close relation between the finite
groups LJ’D /L, and the p-groups D). In fact, these groups are isomorphic. This isomorphism
additionally respects the quadratic forms of both groups see e. g. [Ze], Section 3, [St],
Remark 3.2 or [Wel], Theorem 4.30. In the following, we identify these groups and use them
interchangeably. As in [BY], we consider the |D|-dimensional subspace

(3.3) 5. = Co, C SV (4y)).

pneD

It is known that the space in (3.3) is stable under the action of the group SLs(Z) via the
Weil representation wy (see e. g. [YY], p. 3456). Also, the L? scalar product (-,-) on
St € S(V(Ay)) simplifies to

(3.4) <ZFM¢MvZFM¢u> = Z |l
neD neD neD

Note that D can be decomposed into p-groups D = ®P||D\ D, = ®P|\D\ L,/Ly. For almost
all primes p - those coprime to |D| - L, is unimodular and thus L/ /L, = {0+ L, }. Therefore,

P
we can write D = L;, /Lp. On the level of the space St this decomposition translates
to the isomorphism

(3.5) S.= Q) S, o Qi

p<oo p<oo
where 1 = ZpH p| Hp and 90](3% ) = gpg]) for all primes p coprime to |D|. The local Weil
representation wy, acts on the p-part Sg, of Sg, where

EB#GL;/Lp Ccp](g“), p||Dl,
Ce}), p1|Dl.

p<oco

(3.6) Sy, = {

We then have

wr (V) pu = ® Wp('yp)‘P:gup)'

p<oo
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According to [St], Lemma 3.4 and [BY], Proposition 2.5, the Weil representation w, can
be described explicitly on the generators of SLy(Z,) by

wp(n(B))py” %(bq(up))wé“p)

(3.7) wp(w)plf” = ‘L,/L ‘1/2 S ol )™
vp€Ly, /Ly
a*l
wp(m(a))ed™ = xvpla)es 7,

where (L},/Ly) is the local Weil index and xv,(a) = (a, (—=1)™2|D,|), is the local Hilbert
symbol. Evaluating the local Hilbert symbol gives

a

(3.8) xvp(a) = <| /pr> = XD, (a),

see e. g. [Se|, Chapter III. These formulas imply that (see the proof Lemma 3.4 in [St])
i) the local Weil representations w, is trivial if p is coprime to |D],
ii) if we identify C[D] with Sp via e, — ¢,, then wy coincides with the finite Weil
representation pr, in the following way
(3.9) pr(v) = wr(vy);

where v € SLy(Z) and ¢ € SLQ(Z) is the projection of v into SLQ(Z). Note that by
our choice of the character 1, the relation (3.9) differs from the one in [BY], (2.7), by
conjugation.

The following lemma provides the action of w, for the lower triangular matrix n_(c) € SLa(Z,):

Lemma 3.1. i) Let c € Z;. Then

(3.10)
L,
e = T ) 3wl )=l )

oL,/ Ly
ii) Let c € pZyp. If L,/ Ly is anisotropic, then
(3.11) wp(n(e)ey™ = oy,
Proof. i): By the Bruhat decomposition (see e. g. [KL], p. 69),
n_(c) = n(c Hwn(c)m(—c).
From this we infer that by means of (3.7)

L /L
wp(n(C))‘Pé“p)zmxwp(_c)wp(c1‘1(:“17)) Z wp(cilq(’/p))wp(_c(ﬂpvVp))‘»@z(ﬂyp)-

vp€L! /Ly

it): Since ¢ € pZy, and the level of L, is p, w, acts trivially on Sz

wp(n-(ca™)) " = wy(w)wp(n(ca™))wy(w ™)y’

— wp(w)wp(w ™ )plr)
— QO;S)'LLP).

For the second equation we used that wy(n(ca™')) acts trivially on Sy, . O
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Via the extension of py, to a subgroup of G(Q) (see [BS] and [St2], Section 4), it is possible
to extend wy (cf. [We], Def. 46) to the same group, into which SLy(A) can be embedded. To
explain this extension process, we need some notation. Let N = []/_; p®,

7 — H Ly,
pIN
the projection onto the places p | N and
v [[ 2, — Z/NZ
pIN

the composition of the canonical projection of Z,,, to Z/p®Z and the application of the Chinese
remainder theorem. We further denote with

(3.12) K(p) := {(M,r) € K, x (Z/NZ)* | det((my om)(M)) = r* mod N}

and K" =[], K(p). The following group can be found in [BS], (3.2):

Q(N)={(M,r) € GL2(Z/NZ) x (Z/NZ)* | det(M) = r? mod N}.
Applied to each component of the involved matrix, we obtain a sequence of homomorphisms
K5 TIEw =25 ),
pIN

where II and Iy denote the matrix valued counterparts of m and 7y, respectively. Note that
we can embed SLa(Z,) and {(§59) | € (Z,)*} into K(p) homomorphically by the mappings
kp — (kp,1) and (59) — ((59),7). For the rest of the paper, we omit the second component
of elements of K', KC(p) or Q(N) (if possible) and use the groups K, and K(p) interchangeably.

Definition 3.2. Let &k € K'. Then we define

wy(k) = ® wp(kp)

3.13 e
( ) = ®Wp(kp) ®Wp(kp)
PN pIN
with wy(kp) =idg,  for all primes p { N and
(3.14) R wplkn) = Py ((kp)y)-

p|N

Here by (kp),|ny We mean the tuple of all components &, € K(p) of k belonging to the primes
p dividing N. Combining (3.13) and (3.14) we set

(3.15) wi(k) = pr((Tly o TT)(K)).

Note that Definition 3.2 is compatible with (3.9). For, if we take k € SLy(Z) as the
projection of some v € SLy(Z), we find (IIy o II)(k) = () € SL2(Z/NZ) and

(3.16) wy(k) = pr(v)

since pr, factors through SLy(Z/NZ). As a special case, Definition 3.2 comprises the extension
of the local Weil representation w, from SLy(Z,) to K(p):
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Definition 3.3. Assume that the level N is equal to a prime p and let k,, € C(p) be embedded
into K by ¢,(k,). Then we define

(3.17) wp(kp) = wr(tp(kp)) = pr(Up(kp)).
The following formulas for w, will be used frequently.
Remark 3.4. Let k, € K, with det(k,) = t*> € (Z,)*. Then due to Definition 3.3 and

pr((59) r)ex = ;((1;)) ex

for ((59),7) € Q(N) (ct. [BS], (3.5)), we find

by A
(905 = Py (§9)) 5™
9(Dp) (x)
(3.18) (D, )go
Ap)

= xp,(t)ep"”
and
(3.19) (k1) = (5 D", ) ),
where (tgl 2 ) ky is an element of SLy(Z,). For the computations (3.18) we identified ¢ with

mp(t) and 90,(,/\1’ ) with e A (regarding the right-hand side of the first equation).

Finally, we need to define the local Weil representation w, on double cosets of the form
K(p)m(p~, p~")K(p) where p divides the level of L. These matrices play an important role
in Theorem 5.9. Here m(p~*,p~!) € M, with (k,I) € A,. Note that we cannot proceed
as in the definitions before since 11, is not well defined in this case. But we can mirror the
corresponding process in [BS|, Chapter 5. For the definition of “finite” Weil representation
pr, on m(p~* p~!) we refer to Section 2 or in more detail to [St2], Section 4 ((4.7)-(4.10)).

Definition 3.5. Let m(p~*,p~!) € M,, with (k,1) € A,.
i) Then we set

wp(m(p ) e = pr(m(p ™, ph)) el

(3.20) = pr(m(@h, p)) " pr (m(pF, 1)1l
L A

where we used for the last equation that according to [St2], (4.7), (4.8), pr(m(p!,p"))

9(Dy)
9,1 (Dg)”

case trivial because D; is tr1v1al
ii) For & =ym(p~*,p~")y € K(p)m(p~*, p~")K(p) we define

acts by multiplication with But, this quotient is by definition in this special

—1 (O _ k& —I\\— 1
@21) wp(0) ) = wp(7) e (mp ™ p) ()™
= wp(7) L pr(m(p 7)) wp(r) Lol
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Remark 3.6. The definition of w, on K(p)m(p~",p~")K(p) is independent of the choice
of the representatives. This follows from [BS]|, Prop. 5.1, for double cosets of the form
SLa(Zy)m(p~*, p~!) SLa(Z,) and (3.16). Since the action of w, on K(p) differs from that on
SL2(Z,) only by the action of scalar matrices, i. e. by multiplication with a character (see
Definition 3.4), we obtain the same result for double cosets of the form K(p)m(p~",p~")K(p).

4. THE HECKE ALGEBRA H(Q,//Kp,wp)

In this section we will describe the structure of the local vector valued spherical Hecke
algebra H(Q,//Kp,wp) associated to the pair of groups (Q,, ;) and the local Weil represen-
tation wy,. For each prime p we will introduce a Satake map, which allows us to understand
the structure of this Hecke algebra. For primes p t |D| these Hecke algebras are isomorphic
to the classical scalar valued Hecke algebras defined by the same groups. These are well
understood thanks to the classical Satake map. If p divides |D|, the algebras H(Q,//Kp,wp)
are considerably more complicated because wy, is non-trivial. However, under certain restric-
tions for D), we will define a modified Satake map, which maps H(Q,//ICp,wp) to a simpler
algebra, whose structure can be easier determined.

The following general facts about spherical Hecke algebras can be found in many places,
among them [BK], chapter 4, [Ho] and [Mul].

Definition 4.1. Let G be a locally compact group G, K an open compact subgroup and
p: K — GL(V) arepresentation of K. The Hecke algebra H(G//K, p) of p-spherical functions
is the set of functions f : G — End(V') which

i) are compactly supported modulo K, i. e. each f vanishes outside finitely many double
cosets KgK and satisfy
ii)

f(k1gks) = p(k1) o f(g) o p(kz) for all k1, ke € K and all g € G.
Since each element f of H(G//K, p) is of the form

(9) = _aifilg)
=1

where a; € C and f; is an element of the subspace of functions of H(G//K, p), which vanish
outside K g;K, the whole algebra is generated by the functions f;. Similarly, we denote by
H(G//K) the set of functions f : G — C, which are compactly supported modulo K and
K-bi-invariant, i. e. f(kigks) = f(g) for all k1, ke € K and all g € G. We call H(G//K) also
a spherical Hecke algebra.

It is well known that H(G//K, p) is an associative C-algebra with respect to convolution

(4.1) (f1* f2)(g /fl o f2(hg)dh,

where dh is the standard Haar measure on G normalized by [} dh = 1. Provided that G/K
is countable, we may write

(fixf2)lg)= > filh)o fa(h™'g).
heG/K

In order to determine the structure of H(G//K,p), in view of the remarks before, it is
useful to study the space of functions in this Hecke algebra, which vanish outside a single
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double coset KgK. It can be described in terms of intertwining operators of p associated
with ¢g. To state the corresponding result, we fix some notation. For g € G we mean by K9
the group gKg~! and write p, for the representation h + py(h) = p(g~thg) of K9 N K. As
usual,

Hompgngo(p, pg) = {F : V — V | F is linear and F o py(h) = p(h) o F for all h € K N KY}.
Then we have

Lemma 4.2. Let g € G. The subspace of H(G// K, p) consisting of functions supported on
KgK, is isomorphic to Homgngs(p, pg)-

Proof. The assertion is well known (see e. g. [BK], Chapter 4). Nevertheless, for later
purposes, we indicate a proof by giving the maps of the claimed isomorphism (without further
explanation).

If f e H(G//K,p) with f(g) # 0 supported on KgK, then it easily checked that f(g) €
Homgnko(p, pg) (non-zero). On the other hand, if 0 # F € Homgnis(p, pg), we put
f(g) = F and f(ki1gks) = p(k1) o f o p(k2) and obtain thereby an element of the above stated
subspace of H(G//K, p). O

The following Lemma ensures that the groups @, and K, meet the conditions of Definition
4.1. Tt might be known. Since I have not found it in the literature, I state it here and add a
short proof.

Lemma 4.3. i) The group K, is an open compact subgroup of Q.
ii) The group Qp is a locally compact subgroup of GLa(Qp).

Proof. 1t is well known that GL2(Q)) is locally compact. By Lemma 8, 1.3, of [Ch], it follows

that Q,, is also locally compact. By [Ka], Thm. 2.15, we know that (Z;)2 is an open subgroup

in Z,; Therefore, K}, is an open subgroup in GLa(Z,), which implies that is is also closed (see
[HW], Thm. 5.5). As Q, N GLy(Z,) = K,, we find that I, is a compact subgroup of Q,. O

Note that there is analogue of the Cartan decomposition for the pair (Q,, ICp).

Lemma 4.4. The group Q, can be written as a disjoint union of ICp-double cosets:

Q= U /Cpm(pk,pl)le.
k<l
k+ie2z

Proof. The proof is the same as for the Cartan decomposition for GL2(Q,), see e. g. [Mu],

p. 17. In the quoted proof the matrix g = (¢%) € GL2(Qp) with a # 0 and |af, >
max{|b|p, |c|p, |d|p} is transformed into

m(a,d — atbe) = kagks,

where k3 = n_(—a"'c), ks = n(—a~'b) € ICp. If we assume that det(g) = p**y? and a = pPs,
then d — a lbe = pzx_kyQS_l, Y,s € Z;, and

m(p*, p** %) = n_(—a"'c)g n(—a"b)m(s)m(1, y?).

Therefore, all used transformation matrices are contained in K,. We have a similar decom-
position if d # 0, see [KL], p. 208.

Also, note that any two double cosets K,g1/K,, K92/, are disjoint since otherwise the
double cosets GLa(Zp)g91 GL2(Zy), GL2(Zp)g2 GL2(Z,) would not be disjoint, contradicting
the Cartan decomposition for GLa(Q,). O
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We also have an analogue of the Iwasawa decomposition of GL2(Q)).

Lemma 4.5.
(4'2) Qp = MPN(QP)]CP‘

Proof. This follows immediately from the Iwasawa decomposition for GL2(Q,) by the inter-
section with @, on both sides. O

As already noted, there are two cases to consider regarding the structure of H(Q,//Kp, wp).
It depends on whether p divides |D| or not. In both cases we will determine a set of generators
with the help of Lemma 4.2. Afterwards, we will define a Satake map. If p divides |D|, we
will show - under the restriction that D, is anisotropic - that H(Q,//K,,wp) is isomorphic
to a subalgebra of the spherical Hecke algebra H(M,//Dp, Wp Nzp) ), where
Lp

Sy ) = {p € 81, | wp(n)(@) = ¢ for all n € N(Z,)}.

If (p,|D|) =1, H(Qp//Kp,wp) is isomorphic to the classical spherical Hecke algebra
H(Qp//K,), whose structure is well known. We start with the discussion of the first mentioned
case and consider the latter case subsequently.

To describe the structure of Homy rxs(wp,pg), we need the decomposition of Sg, into
irreducible submodules. This decomposition is well known, see for example [NW], Satz 2,
Satz 4 and pages 521-522. We recall those parts relevant for the next lemma. We denote with
Aut(D,) the group of all automorphisms ¢ of D,, satisfying q(e(x)) = ¢(x) for all x € D. Let
further U be a subgroup of Aut(D,), which is determined for all possible cases of D, in [NW],
Section 2, and U the dual group of U. It turns out that most of the primitive characters in U
give rise to an irreducible representation. The definition of a primitive character can be found
on page 491 in [NW]. We have to distinguish between the two possible anisotropic quadratic
modules. For the case A;, &) A}, Nobs and Wolfart proved the following decomposition of the
space Sp, with respect to the Weil representation

(4.3) St, = S,00) P S, 00 ® (Sa,(1,-) & Sag, (t,-))
xéﬁ primitive
X*#1

where x1 = 1 means the trivial character and

Sp,(x) ={f €S, | flex) = x(e)f(z) forall z € AL & A, and alle € U},
S, (t. =) ={f €Sm, | f(—z) = —f(z) forall z € AL},

M, being a p-adic lattice with M) /M, = Al. The space Sy, (1, —) is defined the same way
by simply replacing ¢ with 1. We write

(4.5) f=h+ D> A+ftf
Xeﬁ primitiv
X2#1

(4.4)

for an element in Sp,, with respect to (4.4). It is shown in [NW] that St (x1) and S, (x2) are
isomorphic if and only if x;1 = x2 or x1 = X2. The remaining quadratic modules in (4.3) are
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(pairwise) not isomorphic. The isomorphism between Sr,(x) and Sr,(X) is given explicitly
in terms of the generators of Sp,(x): A generator

(4.6) Fn () = 3 x(e) ™

eeU
is mapped to fg(X), where 7z, is (a + b, —b) for p, = (a,b). We denote this intertwining
operator by TX,

4.1. The case of primes p dividing |D]|.
Lemma 4.6. Let D, be an anisotropic discriminant form and g = m(p*,p') € Qp, with
(k,1) € Ay Put pg = (wp)g-

i) If k <1, then the space Homy e (wp, pg) 1s generated by the map

(A7) TD):Sp, = S G o Tk (™) = o = o0,

ii) If D, = .A; @ A;, then S, decomposes into the irreducible submodules S, (x1),
St,(X), Sm,(1,—) and Sa,(t,—). For k = 1 the space Homy ~xg(wp,pg) is then
generated by the maps T'(k, k)X, T(k, k)X, T(k,k)X*, T(k,k)" and T'(k, k)~ where

T(k,k)(f) = fro, Tk E)X(f) = T*(fy),
(4.8) T(k, k)" (f) = f+, T(k,k)"(f) = f- and
T(k, k) (f) = fr
and f is an element in Sp, as in (4.5).
iii) If D, = A;,, then S, decomposes into the irreducible submodules Sp,(t,+) and
S, (t,—), where these spaces are defined as in (4.4) with M, replaced by L,. For

k =1 the space Homy ~xg(wp, pg) is then generated by the two maps T(k, k)t and
T(k, k)=, where

(4.9) T(k, k)" (f) = f+ and T(k, k)~ (f) = [-.

Proof. In light of Lemma 4.4, it clearly suffices to choose g = m(p¥, p') with (k,1) € A,.
i) First, note that

_ bpk—1
m(p®,p') (25) m@",p) ! = (Cpilk v )
In particular, for (¢ %) = n(p'~*) we find that n(1) is an element of K, N K. Thus, for any
F € Homy g (wp, pg) the equation

Fowp(m(p®, p) " n(1)m(p*, ') = wp(n(1)) o F <= wy(n(1)) o F = Fowy(n(p'™"))
<= wp(n(l))o F =F
must hold. For the last equivalence we have used that the level of L, is p. It follows that

the image of F' is a subset of Si\;(Z” ). Since the identity wp(n (b))gpl(?) = gpg(;’) holds for all

b € Z, if and only if ~ is isotropic and D), anisotropic, we can conclude that SZ)(ZP) = C%()O).

Therefore, F' is a scalar multiple of the map gol(, 2N @;0) and has the claimed form.

ii) The decomposition of Sz, into irreducible submodules is well known. For the quadratic
module A; see for example [NW], Theorem 4. The case of the quadratic module Azt, @ ./411)
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is treated in [NW], Theorem 2 and Section 9, p. 521-522. In the case k = [ the equation
F o py(h) = wp(h) o F simplifies to F o wy(h) = wy(h) o F for all h € ICp. Thus, F is an
intertwining operator for w,. The structure of the space of intertwining operators can be
found in books about representation theory, cf. [JL], Chapter 11. O

In view of Lemma 4.2 and Lemma 4.6, the following corollary is immediate.

Corollary 4.7. Let p be a prime dividing |D|, D, anisotropic and (k,l) € Ay. Then the
Hecke algebra H(Qp//Kp,wp) is generated by the following elements:

i) Fork <l
(4.10) Tioa(k1m(p®, p')ka) = wy(k1) o T(k,1) o wy(ka),

where Ty, ; is only supported on Kpym(p¥, p)ICy. Here T(k,1) is the intertwining oper-
ator specified in Lemma 4.6, 1).

ii) For k=1
(4.11) T o (krm(p®, p¥)ka) = wy (k1) 0 T(k, k) o wy(k2),
where supp(Ty 1) = Kpm(pk,pk)le and T'(k, k) is one of the operators
T(k, k)X, T(k, k)X, T(k,k)*, T(k, k)~ or T(k,k)X*
given in Lemma 4.6, ii) and iii).

The following theorem investigates the structure of the Hecke algebra H(M,,//Dp, wp

‘Si\/(Zp) )

P
assuming D), is anisotropic.

Theorem 4.8. Let p be an odd prime dividing |D| and D,, anisotropic.

i) Then
iy (0) _
90 9 |D | - pa
Wp(m(tl,tz))%(ao) = {(EIOD)’”|> ? ? )

= Xp, (t1)¢l

for all m(t1,t2) € Dp.
ii) Then Si\;(zp) is equal to C@I()O) and the Hecke algebra H(M,/ /Dy, wp|sN<ZP)) isomorphic
L
to the scalar valued Hecke algebra H(Myp//Dp). ’

Proof. As already mentioned in Section 2, the order of an anisotropic quadratic module D,
is either p? or p.
i) Let m(t1,t2) € Dp with det(m(t1,t2)) = t* € (Z)?. Then by (3.19)

wp(m(t1,2)) @l = wy(m(t, ¢))wp(m(t 1,1 t2))p

-1
_ <t> (t tl) oy
1Dyl ) \ Dyl ) 77

where we have used (3.8) and (3.18). The claimed result now follows.
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For ii) we first note that if D, is anisotropic, the space SIJ-JV(Z” ) is equal to (Cgoéo) and thus

P
. . . . N(Z
one-dimensional. From i) we know that D), acts via w, on S Lp( v)

by multiplication with the
quadratic character xp,. Consequently,

H(MP//DP7 WP‘SN(ZP) )= H(MP//Dp7 XDp)a
Lp

where the latter Hecke algebra is meant in the sense of Definition 4.1 with the one-dimensional
representation p = xp,. The structure of the latter algebra was discussed in [Ho], Remark
5.1. It was stated there that H(M,//D,, xp,) is isomorphic to the usual spherical algebra
H(M,//D,). To state this isomorphism explicitly, we specify a set of generators for the
former algebra. It is generated by elements of the form

Tia(m(te, t2)m(p", pYm(s1,s2)) = xp, (m(t1,t2)) o T(k,1) o xp, (m(s1, 52))

with
T(k, l) == ﬂme(pk,pl)Dp ldsi\fp(Zp) .
The isomorphism is then given by
(4.13) IXDp : Tk,l = ]]_'me(pkml)pp : idSJLV(zp) — XDka,h
p

where have extended xp, trivially to a quasi-character on the whole group M, (see also
[Hol). O

We now define the before mentioned Satake map to further clarify the structure of H(Q,//K,, wp)
and to connect it to the algebra H(M,//D,):

S H(Qp/ /Ky, wp) — H(Mp//pmwp‘siv(zp))a

(4.14)
T | m— 8(m)"/? Z T(mn)‘smzp)
neN(Q,)/N (Zy) "
Remark 4.9. i) Note that this definition is analogous to the one given by Herzig ([He])

mlo): M s also

over a field in characteristic p. The modulus character (5( 0 ms s
part of the classical Satake map (see e. g. [De], Chap. 8), where it ensures that
the image of the Satake map is invariant under the natural action of the Weyl group.
Herzig omitted the modulus character in his definition of the Satake map as it does
not produce the invariance under the action of the Weyl group. Nevertheless, we keep
it in the definition of S since it indeed does share the property of invariance under
the Weyl group.

ii) With the same arguments as after the statement of Theorem 1.2 and as in its proof
(Step 0) in [He], it can be proved that S is a well defined map. To prove that S is
a C-algebra homomorphism all calculations of Step 2 in the proof of Theorem 1.2 in
[He] remain valid in our situation.

As is shown in Lemma 4.6 and Corollary 4.7, the space of maps in H(Q,//Kp,wp) with
support equal to ICpm(pk, pk)le is two-dimensional or of higher dimension if wj, is considered
on the whole space Sr,. If we restrict ourselves to an irreducible subspace of S, the before
mentioned space is one-dimensional. On the one hand, this condition would guarantee that
the Satake map (4.14) is indeed an isomorphism (without it, (4.14) is not even injective, as
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is easily checked). On the other hand, it is to restrictive for our purposes. So, in order to
obtain an isomorphism between H(Q,//Kp,wp) and a subalgebra of H(Mp//Dy,wp ()

via (4.14), we restrict H(Q,//Kp,wp) to a subalgebra where the space of maps supported on
the double coset ICpm(pk , pk)le is replaced with the subspace generated by the operator

Ti(kim(p®, p)ka) = wp(k1) o T(k) o wy(ks) with

T (k) + 3 e primitie TV K) + TH (k) + T~ (k k), for AL @ Al
(4.15) T(k) = X2#1
Tt (k,k)+ T (k,k), for Al

=ids,, -

It will turn out that T} is compatible with the Hecke operator T'(m(p~*, p~*)), see Theorem
5.9, which is the rationale for this choice.

For the next theorem we fix some notation:
Let N(M,) be the normalizer of M, in Q,,. Then the group W = N(M,)/ M, is called Weyl
group. It is isomorphic to the symmetric group S2 and acts on M, by changing the entries
tl, tg of a matrix m(tl, tg).

Let (k,l) € A+. By H1(Q,//Kp,wp) we mean the subalgebra of H(Q,//K,,w,) generated
by T with

T
(4.16) 7=t Bl
Ty k=1

as specified in the first line of (4.15) and Corollary 4.7. In order to state results for all genera-
tors of HT(Q,//K,,wp) in subsequent sections we often write T}, ;. instead of Tg. Furthermore,
let

Tk = ]lem(pkka)Dp ' idSLp’

(4.17) . .
Thd = LD, m(pk phyD, Idst +1p,mpt pkyD, -ldst .

Then we denote by H(M,//D,,w, N<Zp))W the subalgebra of H(M,//Dp,wp (. ) gener-
ISy, [ST,
ated by 73,; and 7, which is nothing else but the subalgebra of all elements of ’H(M; /IPp:wp niy)
ISLp

invariant under the Weyl group W.

Theorem 4.10. Let p be a prime dividing |D| and D,, anisotropic.
Then the Hecke algebras HY(Qp//Kp,wp) and H(Mp//Dp,wp
IS

(Zp)
Lp

YW are isomorphic.
Proof. In view of Remark 4.9, it suffices to prove that S is injective and surjective. To this
end, we compute S(T') for a non-zero T € H1(Q,//Kp,wp). By Corollary 4.7, we may assume
that T is either Tj; or T}, with (k,1) € A4.

We first consider the case k < [. Thus, T = Tj; € HT(Qp//Kp,wp) with supp(Tk,;) =
Kpym(p*, pH)IKCp. Let m(p®, p?) € M,, for arbitrary i,j € Z with i < j and i + j a square. One
can prove (see [De], Lemma 8.24) that m(p’, p/)N(Q,) N Kpym(p*, p')KC, # 0 if and only if
1,7 > k and i + j = k + [. Therefore,

(4.18) supp(S(Tk,)) C {me(p”,pkﬂf”)l)p lv=~F, ... 10}

Cartan decompositions and explicit representatives of Qp/Zy:
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Let 0 # x = p"s with s € Z;. We distinguish two cases:

1. k+1—-2v—7r>0:

First note that this inequality is always fulfilled for v = k for all » < 0. Employing the
Cartan decomposition produces for all v

(419)  m@”, P s) = (@ s mp T, P T ) m(s)n(—p s w.

It follows that the matrix m(p”, p**'=")n(p"s) lies in the double coset K,m(p*,p')K, if and
only if r =k —v. Thus, for v =k +1,...,l the sum }° ¢ Ti1(m(p”, p*=")n(z)) runs

k—v

over all elements of the form x = p*¥s, s traversing the set

v—k—1
Uv) = { Z zip' | 2o € (Z/pZ)* and x; € Z/pZ, i = 1,...,V—k—1}.
i=0

For v = k this sum consists of a single summand corresponding to z = 0 € Q,/Z,.
2. k+1-2v—7r<0:
We find

(4.20) m(p”, p" " )n(p"s) = n(p* T Lsym(p”, pFTY).

As the latter inequality is never satisfied for v = k for any 7 < 0, m(p”,p"=")n(p"s) is
contained in K,m(p*, p!)KC, if and only if v = [. The latter equation can be written as

(4.21) m(pl,pk)n(st) = n(pl*k”s)w*lm(pk,pl)w.

As k—1—r <0 is equivalent to r > k — [, the sum ert@p/zp Ti1(m(p!, p¥)n(x)) runs over
all z € Q,/Z, with |z|, <l — k. Assuming a representation of the form = = p"s, we may put
r =k — [ and write

> Tiam@, (@) = Y Tha(mp', p*)n@"s)),

x€Qp/Zyp seU(1)°

where

1
zip' | z; € Z/pZ, izl,...,l—k—l}.

I—k—

Note that |z|, < 1 for all = € U(1)°.

Consequently, U(1) UU(I)° contains all principal parts z in Q,/Z, with v,(z) > k — . As
already pointed out, these are all x, for which T} ;(m(p!, p*)n(z)) is non-zero.

Computation of (STy,;)(m(p”, p*=")):

By means of the decompositions (4.19) and (4.21), we are now able to compute (ST} )(m(p”, p*="))
explicitly for any v € {k,...,l}. Since the computations for v = [ are more complicated, we



VECTOR VALUED AUTOMORPHIC FORMS 21

treat them separately afterwards. Thus, let v € {k,...,l — 1}. Then

(4.22)
Z T (m phtt= ”)n(w))‘sN(Zp)
2€Qp/Zyp Lp
> seu(wv) Tri (m(Pl'vpk“_”)n(Pk_”S))|SJLV;ZP> , v#E,
N Tk,l(m(pkapl))wmzp), V=

2 serutw) @p(n-(p'7"s71) 0 Ty (m(pF, p1) o wp(m(s)n(—p" s~ w) vz, v 7k,

= Lp

Tk,l(m(pk,pl))lsiv(zp), v=k.
P

Since the level of L, is p, the last expression in (4.22) simplifies to

> Taalmlpp')) oy (mls)w) g -

seU(v) Ly

With the help of the explicit formulas (3.7) of w, and Lemma 4.6, we obtain
(STk,l)(m(PmGH_V))%(;O)

v y ’7 e
= o(m(p”,p*" ”ﬂ{; 172 3D ( )Tkz m(p*,p"))pl

YEDp seU(v

B 0, if | Dyl
S(m(p?, )2, (D) | D VAU W)y, if | Dy = p?

In view of the discussion above, for v = [ we have

(4.23)
> Tea(m(p', p*)n(z)el?) =
2€Qp/Zp

> wp(n(s™ N Tea(mp", p)wp(mls)w)el + Y wy(w ) Toa(m(p®, p)wp(w)fy.
(0)°

seU(l)

With the help of Lemma 3.1 and the calculations before, it can be verified that the first
summand of the above expression is equal to

() w0 5 3 sttt

seU(l) vpEDp
(4.24)

=3 @ Y elwoaw) | 8,

vp€Dp 20€(Z/pZ)*
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where we exploited for the last equation the fact that level of L, is p and that fyp(Dp)Q = (ﬁ)

(see e. g. [Ze], p. 73). Similarly, the second summand can be evaluated to be
(4.25) ORI

vp€Dy
Replacing the right-hand side of (4.23) with (4.24) and (4.25), yields

> Tia(m@, P n(@)pl”
2€Qp/Zyp

=@l Y | DD elzalm)) | b
vpeDp \z€Z/pZ
= U(1)°[pp.
Here we have used the standard formula for the exponential sum - ., .7 e(zq(vp)). This
leads us finally to
(4.26)
(STha) (m(ty, ta)) = §(m(ty, ta))/?x

(10, m(pt 5D, idSLN;Zm’ m(t1,t2) = m(p*, p'),
3pYp(Dp) | Dp| AU W) [ Lp i p pi+1-v)D, idsiv;zpn m(ty, t2) = m(p”,p"), v £k,
P Ll 4D, idgve, m(ty, t2) = m(p', p*),
L0, ’ otherwise,
_ p%(l’k) y
Lo, m(p+ oD, idstV;Zp% m(ty, ta) = m(p¥, p'),
oo (Do) L, m(pe g+i=ym, W gy, mit, t2) = m(p”, PP v £ kD
Lo m(pt ), idsglf%ph m(t1, t2) = m(p', p¥),
0, otherwise,

\

where 6, = 1 if | D,| = p? and zero otherwise.

If k = [, it follows from (4.18) that supp(ST},) = Dym(p*,p*)D,. The same thoughts as for
k <[ after equation (4.19) yield

(ST, 1) = Tl 1) g
P
= Lp,impk pk)D, idszL\rp(zp) .

From the above follows immediately that S is injective. For the surjectivity it suffices to proof
that 7, and 7, ; are contained in the image of S. This can be done almost verbatim as in [De],
p. 212. O

Remark 4.11. Combining Theorem 4.10, Theorem 4.8 and the isomorphism

(4.27) Lo, m(pk p1yD, = Lk pt)D, s
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which maps H(M,//D,) to the group algebra C[M,/D,], shows that H*(Q,//Kp,wp) is
isomorphic to C[M,,/D,]"". This recovers essentially the classical result of Satake (see [Sa]).
Also by Satake, this group algebra can be identified with a polynomial algebra.

Whenever p divides |D| and we deal with elements T}, ;, T}, or 74, 71 of either of the Hecke
algebras HT(Q,//Kp,wp) or H(My//Dp,wp N (o) )W, we mean the above stated and assume

that D, is anisotropic.

4.2. The case of primes p not dividing |D|. We denote with #(M,//D,)" the subalgebra
of all elements of #(M,//D,) invariant under the Weyl group W. In this case it easily seen
that H(Qp//Kp,wp) is isomorphic to H(M,//Dp)"W.

Theorem 4.12. Let p be a prime coprime to |D|. Then the Hecke algebras H(Qp//Kp,wp)
and H(M,//D,)" are isomorphic as algebras.

Proof. By Lemma 3.4 in [St], we know that L, is unimodular and w, is the trivial represen-
tation on the space Sz, = (Cgaj(oo). A basis of H(Q,//Kp,wp) is then given by

{Illcpm(pkypz),cp -idst | (k,1) € A+}.
The composition of

FH(Qp/ [ Kp,wp) = H(Qp//Ky), Lic,m(p phic, * idst = Lic m(pk phk,

with the classical Satake map (see e. g. [De] or [Cal) gives the desired isomorphism. O

5. VECTOR VALUED AUTOMORPHIC FORMS AND VECTOR VALUED MODULAR FORMS

In his thesis [We], Werner assigned to each vector valued modular form a vector valued
automorphic form on GLy(A). He also provided an adelic Hecke operator, which corresponds
to the Hecke operator T (g ?) on a space of vector valued modular forms. In this section we
continue this work and embed it into a more general framework of vector valued automorphic
forms. More specifically, we

(1) describe the image A (wys) of Sk(pr) under Werner’s adelization map and establish
that it is an Hilbert space isomorphism (see Theorem 5.5).

(2) define an action of the whole Hecke algebra H(Q,,//K),wp) on A.(wy).
However, we stick to the Hecke operators given in [BS] instead of using Werner’s Hecke
operators. As a consequence, we have to work with the extension of the Weil representation
as given in [St2], Section 4, Section 2 and its adelic counterpart in Section 3 of the present
paper.

Instead of working with GL2(A), we consider the restricted product

(5.1) G(A) = H/ Qp =1 (9) € H 9y | gp € Kp, for almost all primes p » ,

p<oo p<oo
where
Qo = {M € GLy(R) | det(M) € (R*)?}.
Note that Koo = SO(2) is a subgroup of Q.. The group G(Q) can be embedded diagonally as
a discrete subgroup of G(A). An important decomposition for GLy(A), which will be needed
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for the definition of automorphic forms, is the strong approximation. An analogous result
holds for G(A).

Theorem 5.1. Let K =[], Kp C GLa(Ay). Then

(5.2) G(A) = G(Q)(Qw x K).

More generally, let U =[]
det(Ud) = (Z*)2. Then

p<ooUp be any open compact subgroup of IKC with the property that

G(Af) =G(Q) - U and

G(A) = G(Q)(Qoo x U).

Proof. A proof for the classical result for GLa(A) can be found in many places, among them
n [KL], Section 5.2 and Section 6.3. One can check that the proofs of Proposition 5.10,

Proposition 6.5 and Theorem 6.8 of [KL| carry over to the analogous statements in our
setting. ]

(5.3)

In [KL] and [Ge] functions f : GL2(Q) \ GL2(A) — C with certain properties were related
to (scalar valued) elliptic modular forms. Here we consider G(Q)-invariant and Sp-valued
functions

G@Q\G(A) = S
with a similar goal. With respect to the basis {¢,},ep of St such a function can be written
in the form ' =3 p Fupu. In view of (3.5) and (3.6), we will only consider factorizable
functions, that is, only those Sp-valued functions F which possess a decomposition of the
form
F(¥(g00 % 7)) = Q) Fp(goo: 9p)»
p<oo
where )
F 00(9o0) Fp(9 s plID
Fo(goongn) = {ZM 0o(950) Frplgp)es”, P | ID],

0
oy, p1|D.

Using the bilinearity of the tensor product, we have
A
FuWgoe <9 = Y I Proclos) B nlan) @ 5™ 00
(Ap)pE€ED <o Dp P<® p<oo

Note that F' is well defined since any occurring sum, product or tensor product is finite.
We denote the space of all these functions F' : G(Q) \ G(A) — Sy, with Fr. Associated to
the Weil representation wy; on the space Sy, we define
(5.4)
i)  F), is measurable for all p € D
9 B i) F(zg9) =wys(zf)"LF(g) for all
L(G(Q) \ Q(A),wf) = FerfL z = ZQ(Zoo X Zf) € Z(A)
i) [ygnau I F(0)IPdy < oo
and

L3(wy)

= {F € L2(G(Q)\ G(A),wy) ‘ / Fu(ng)dn =0 for all p € D, a. e. g€ G(A) } .
N(Q)\N(4)



VECTOR VALUED AUTOMORPHIC FORMS 25

Here by

i) ||F(9)||* we mean (F(g), F(g)) as defined in (3.4),
ii) G(R) = Z(R) \ G(R), where Z(R) is the center of G(R) and R stands for any com-
mutative ring with 1,
iii) dg and dn we mean the Haar measure on G(Q)\ G(A) and N(Q)\ N(A), respectively.

Measurability for each component function F}, is meant in the sense of Proposition 7.15 of
KL]: F}, can be written as a product F,,(9»), each component satisfying:

i) Fp: Qp — Cis measurable for all p < oo
ii) F, =1 for all p ¢ S, where S is a finite set of places.
M?p"cp

The above integrals over G(Q) \ G(A) and N(Q)\ N(A) are explained in [KL], Proposition
7.43 and Proposition 12.2, and meant in the very same way. Also note that the integral in
iii) of £2(G(Q) \ G(A),wy) is well defined as F satisfies ii) and the Weil representation wy
is unitary with respect to (-,-). The spaces £*(G(Q)\G(A),ws) and LZ(wy) are subspaces of
the spaces L?(G(Q)\G(A),ws) and Lg(w), respectively, which are defined the same way but
without the assumption that the functions are factorizable.

Werner assigned in [We], Def. 49, a C[D]-valued Function Fy on G(Q)\G(A) to a cusp form
f € Sk(pr). We adopt his definition to our setting, which basically means that we replace
the group ring with the isomorphic space Sr..

Definition 5.2. Let f € Si(pr) and g € G(A) with g = ¥(goo X k), where v € G(Q), goo € Qoo
and k € K. Then in terms of this decomposition we define a map &7

(5.5) frr d(f) = Fy with F(g) = wp(k) ™ 5900, 1) 7" f (o).

Lemma 50 in [We] shows that the definition of F in (5.5) is independent of the decompo-
sition of g. Moreover, from its definition it follows immediately that F; is G(Q)-invariant.

Proposition 5.3. Let f € Si.(pr). Then the assigned function Fy on G(Q)\ G(A) lies in the
space L2(G(Q) \ G(A), wy).

Proof. i) By definition, the u-th component of Fy is given by
(Fp)u(g) = (@i (k)™ 5(goor )" f(goot), M)
. 1 (A
(56) = (900, )% > Falgoed) T (wplhy) 1ol 0™,
rxeD p<oo

where g = ¥(goo X k). It is well known that j(goo,?) " f1(goo?) is measurable on Q.
as fy is a scalar valued cusp form for I'(IV) (cf. [Ge], §2, for this case). As a result of
the discussion in Chapter 3, we have that wy, is trivial for all p{ N. For p | N we find
by means of the explicit formulas of w,, (see (3.7) or [BY], p. 645, or [St], Lemma 3.4)
that wy, is trivial on the subgroup

Ko@) = {(24) € Ky | (24) = (39) mod p™ )z, }

and factors thereby through K, /KC,(p°™%(P)) for each p dividing N. Since

le(pordP(D )) has as compact subgroup a finite measure, (wp(kp) ~Lp”, p7) is a mea-

surable function for all primes p. We then obtain that (F}), is measurable in the
above stated sense.
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ii) Let 2z = 2g(200 X 2f) € Z(A). Then it follows immediately from the definition of F}

that Fr(zg) = wr(zp) " Fr(g).

iii) It can be verified that Proposition 7.43 and the discussion before of [KL] is also valid

in our situation. We have to check that all steps of the proof are still working if we
replace the involved groups by the corresponding groups in our setting. This is in fact
the case, some steps are even easier since we only have to deal with matrices whose
determinant is a square. As a result, we may replace the integral over G(Q) \ G(A)
with the corresponding integral over DKo, x K. Here D is a fundamental domain
for T'\ H interpreted as subset of SLa(R) (not to be confused with the discriminant
group). Following the proof of Proposition 12.15 in [KL], we find for FY

/ IFp(g)Pdg = / / IFy(g x k)| 2dkdg
GQ\G(A) DKoo JK
— /D 13(g00s )" F (g0ei) |2dg,

where we have used that wy is unitary with respect to (-, -) and that the Haar measure
on @, is normalized to be equal to one on ), for p < co. If we identify g.¢ with an
element 7 € I' \ H, the last integral in (5.7) becomes

2 Iy ()7 2
/FHf()H (),

which is the Petersson norm of f € S.(pz) and therefore < co. Thus, the L?-norm of
Fy is finite.
(|

Lemma 5.4. Let f € Si.(pr) and Fy the assigned automorphic form given by (5.5). Then

/ Fu(ng)dn =0
N(Q)\N(4A)

for almost every g € G(A) and all p € D.

Proof. The proof proceeds along the lines of the one of Proposition 12.2 in [KL]. Let n =
n(rg)(n(rs) x n(zys)) € N(A) and g = (9o x g¢) € G(A). Then the definition of Fy and
wy yields

Fu(ng) = (§(goe, 1) ~"j(n(2o0), goo@')_“Wf(gf)_lw}f(n(wf))_lf(n(xoo)(gooi)),<PH>
= (9o, 8) "G (1(@o0), 9ool) " D (=2 a()) fu(n(xee) (9561) (s (95) " 0, )
veD

As suggested in [KL], Prop. 12.2., we calculate more generally for r € Q

(5.8)

/ Fu(n(@)g)(re)ds
N(Q)\N(4A)

= (9o )" ) (w0 (7)o pp) X

veD

/ N ¢f(_fo(V))fV<n<$OO)(gooi))¢M(T$M)¢f(rxf)d$fdx00'
N(Z)\(N(R)xN(Z))
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We can write the integral in the last expression as

1
| fna) g trzne) [ s = atw))eg)do o
0 N(Z)
where the integral over N(z) is one if and only if r € Z 4 ¢(v). For such r (note that
Yoo (Too) = €(—Zo)), taking into account that fol fo(@oo+T)e(—TToo)droo = e(r Re(T))c(v, 1),
where ¢(v,r) is the Fourier coefficient of f with respect to (v, ), we finally obtain

/ Fu(n(@)g)(re)de = (g0 1) 3" (wplar) ™ 0o ppde(r Re(r)e(w,7),
N(@Q\N(A) veD

where 7 = goot. Since f is a cusp form, we have that for » = 0 all coefficients ¢(v, r) vanish.
This gives the desired result. U

The next theorem characterizes the image of Sy (pr) under the map </ in (5.5) more closely.

Theorem 5.5. Let Ay (wy) be the space of functions F € L3(wy) satisfying
i) F(gk)=ws(k)"1F(g) for allk € K and all g € G(A)

ii) F(g (-C:fr(l?(g) zg;((z))>) = "9 (g) for all 6 € [0,27) and all g € G(A)

iii) All the components F), of F, considered as a function of Qs alone, satisfy the differ-
ential equation LF),, = 0. Here L is the differential operator given by

; 0 0 0
—2i0 [ o, .
(5:9) L=e < QW(%U 2y8y Z@H)

with respect to the coordinates referring to the decomposition

- 1 x y% 0 cos(0) sin(0)
(510) Joo = Zco <0 1> < 0 y%) <7sin(9) COS(@))

0f goo € Qoo-
Then the map o/ defines an isometry from Si(pr) onto Ag(wy).

Proof. This theorem is well known for scalar valued automorphic forms, see e. g. [Ge] or
[KL]. Most parts of its proof can be settled with reference to the proof of its scalar valued
analogue.

Let f € Sk(pr). It follows from Proposition 5.3 and Lemma 5.4 that Fy € L3(wy). The
assertion in i) is proved in [We|, Theorem 51, the one in ii) results from a straightforward
calculation analogous to the scalar valued case (see [KL], Proposition 12.5). For iii) note that
Fu(goo x 15) = y*/2e*0 f,(x + iy) if we decompose goo € Qoo according to (5.10). The same
proof as in [KL], applied to each component F),, establishes the result using the assumption
f € Sk(pr).

Kudla [Ku] defined a map that assigns to a vector valued function F' on G(A) a vector
valued function fr on H:

(5.11) Fe fp, fr(1) =3(gr,1)"F(gr x 1¢),
1 X y% 0
well-defined and that it is the inverse map of &7 (see [KL], Prop. 12.5, for the corresponding

scalar valued result). It remains to show that fr is an element of S (pr) for any F' € A (wy).
Kudla proved that fr transforms like a vector valued modular form with respect to wy if

where g, = > and 7 = g;¢t = x + iy € H. It is easily seen that this map is
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F e Ai(wys) ([Ku], Lemma 1.1). Since each component of F' satisfies the differential equation
in iii), it follows that each component of fr is holomorphic on the upper half plane (see [KL],
Prop. 12.5). In view of these two properties, fr possess a Fourier expansion, see [Brl], p. 18.
By Proposition 5.3 we know that the Petersson norm of fr coincides with the L? norm of F,
it is in particular finite. One can prove in the same way as in Prop. 3.39 of [KL] that fp is
an element of S, (pr). Thus, the map in (5.5) is surjective and an isometry. O

5.1. The action of H(Q,//Kp,w,) on A.(wys). The goal of this subsection is to define an
action of G(A) via the Hecke algebra HT(Q,//K,,wp) (or H(Q,//Kp,wp) if (p,|D|) = 1) on
the space A, (wy) of vector valued automorphic forms. Whenever we write H*(Qp//K;, wp)
we tacitly also mean H(Q,//K,,wy) in the case (p,|D|) =1 and don’t mention the latter in
the following. Since H(Q,//Kp,wp) acts only on the p-component of an element F' € A, (wy),
we need to complement the contribution of H*(Q,//K,,wp,) with suitable operators for the
other places. The envisaged action will be defined in such a way that it is compatible with the
action of Hecke operators on Sy (pr). Werner proposed in [We|, Chapter 6, the definition of an
adelic vector valued Hecke operator mimicking Gelbart’s approach of an adelic scalar valued
Hecke operator. Our approach is more conceptual and transfers the action of the classical
spherical Hecke algebra (as for instance in [BP] or [Mul], § 6), to the vector valued setting.

Definition 5.6. Let p € Z be a fixed prime, g = Y(9ooxgy) € G(A) and T, € HT(Q,/ /Kp, wp).
Then we define for a fixed h € G(A)

(5.12) R (h): Fr, = Fu, Fr~ R%(h)F = (X) Ry (hg) F,y
with
T, ) Fy(9oos 9ghq), q#p
(>13) Ra” () Folon) = {Tpmp)(Fp(goo,gp)), =p
The operator
(5.14) T Aclwy) = Alwy), ToE)9) = Y R (p(p)F(gp(ay))
rp€Qp /Ky

can be interpreted as a vector valued analogue of the construction in [BP] or [Mul]. For
the sake of better readability, we omit the argument g, in the subsequent calculations and
assume tacitly that the local functions also depend on geo.

Remark 5.7. i) If we decompose 7’7 into into its components, we obtain
(5.15) T (F)(g) = ®Fq(gg) ® Z Tp(xp) Fp(gpp)
qF#p Tp€Qp/Kp

Since T, € H*(Q,//Kp,w,) has compact support, the sum in (5.15) is finite. It can be
verified by means of Theorem 5.5, i), and Definition 4.1, ii), that (5.15) and therefore
(5.14) is independent of the representative z, € Q,/IC, and is thus well-defined. We
will show later in the paper that 777 (F) is indeed contained in A, (wy).

ii) Let p be a prime, T, T, € H*(Q,//Ky,wp). Then by a straightforward calculation,
using (5.15) and the bilinearity of the tensor product, we obtain

(5.16) T (F)(g) = a T (F)(9) + y T (F)(9)
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for all F € Ax(wy), all g € G(A) and all z,y € C.
There is also a compatibility relation regarding convolution:

TG (F)9) =R Fe) e | S Y Toww) o Ty, wp) | (Fplgpap)

q#p 2p€Qp/Kp \Yp€Qp/Kp

Since both sums over Q,//C, are finite, we can change their order and obtain

®Fq(gq) ® Z Z Tp(yp) o T, »(Up p)(Fp(gpxp))

aFp Yp€Qp/Kp \2p€Qp/Kp

- ®Fq(gq) ® Z Ty (yp) Z T/ (2p) (Fp(9p¥p2p))

q#p yp€Qp/Kp 2p€Qp/Kp
= (T o TT2)(F)(9).
For the second equation, we replaced for each y, the sum over x, by a sum over a new
variable z, by means of the substitution x, = y,z2p.

iii) Relation to classical adelic Hecke operators: If the lattice L is unimodular, the discriminant
group D is trivial, which implies that the finite Weil representation py, is trivial. Consequently,
following Section 3, the local Weil representation wy, is trivial for each prime p. This in turn
implies (cf. Theorem 4.12) that K (Q,//K,,w,) is isomorphic to the classical spherical Hecke
algebra H(Q,//K,). Let Ff € A, (wys) with

Ff(’Y(goo X k)) = j(goos i)iﬁfO(Qooi)wf(k)ilwo
= J(9oos 1) " fo(goo?) 0
and Tj = 1p - idg,  with t) = Lx mpk piyic,- Then by Definition 5.6,

T (Fp)(7(goo x k) ®g0 Z Tp(p) (Fy)p(kpp)

q#p Tp€Qp/Kp

= ®901(10) ® Z Tp(2p)(J(goor 1) " fo(goot) o)

q#p prEQp/’C

Taking the definition of 7}, into account, we have

T () (5(goor 1) " fo(gooi)p0) = Tp(p)i (gocs 1) " fo(goot) )

and consequently the right-hand side of the equation above becomes
> T(@p)i(goor i) " folgeei)p0
Tp€Qp/Kp
such that
<TTP(Ff)(’Y(goo x k)), o) = Z Tp(@p) F'fo (gtp(2p))

zp€Qp/Kp

_ / Tp(2p) Fgy (9up(p) ) dap,

P
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where F,(7(goo X k)) = J(9goo, ) ™" fo(goot) is the automorphic form associated to the scalar
valued elliptic modular form fy € Sk (I") of weight x for I'. The latter integral is the adelic
Hecke operator attached to t, € H(Q,//Kp). It is important to notice that we only obtain
those adelic Hecke operators where the underlying matrix m(p”*, p!) has a square as determi-
nant.

Lemma 5.8. Let p be a prime, Ty € HT(Qp//Kp,wp) and HT(Qp//Kp,wp) as given in
Corollary 4.7 and Theorem 4.12, respectively and F' € A, (wy). Then T Tt
i) is G(Q)-invariant and
i) fulfills
Tt (F)(gk) = wy(k) ' TTeL(F)(g) for all k € K and all g € G(A),
TTel(F)(2g9) = wi(zp) L TTU(F)(g) for all z € Z(A) and all g € G(A).
Proof. i) Since F € A, (wy) is G(Q)-invariant, the same holds for 77k (F) as can be

seen by means of (5.15).
ii) By Theorem 5.5, i), and Definition 4.1, ii) we have

TTk’l(F)(gk) = ® Fy(gqkq) @ Z Tiei(wp) (Fp(gpkpap))

q#p zp€Qp/Kp

= Qualke) Fylg) @ | D Tialky  yp) (Fplgpup))

q#p YpEQ/Kp
®q;ﬁpw‘I(kQ)_1Fq(gCI) ® wy(kp) (Zypegp/lcp e (Yp) (Fp gpyp))) ., if p||D]
Qp Walkig)  Fylgq) ® (Zypegp/ic e (Yp) (Fp(9pYp) ) if pt|D|

= wy (k) TTH(F)(g).

For the second equation we used the substitution y, = k,x,. This settles the first
claimed identity.

For the second identity we make use of the fact that F' € A, (wy) and that w,(z,) acts
for z, € Z(Z,) on Sr, by multiplication with a scalar (cf. (3.18)), which commutes
with the operator T} ;. Let z = 2g(200 X 2f) With 25 = (24)g<00 € K. Then

TTk’l(F)(Zg) = ®wq(zq)7qu(gq) ® Z Tk,l(xp)(wp(zp)ile(gpxp))
q#p Tp€Qp/Kp
= wy(z) ' TTH(F)(g).
O

Let p be a prime, (k,1) € Ay, Ty € HT(Qp//Kp,wp) and HT(Q,//K,, wp) as in Corollary
4.7 and Theorem 4.12, respectively and 7 7k as in Definition 5.6. We now show that the map
o/ commutes with the Hecke operators 77kt and T(m(p~*,p~")) on both sides and thereby
confirm that 77k indeed preserves Ay(wy). For a prime p { |D| this result was in principle
proved by Werner (cf. [We|, Theorem 53), but not in our framework and not for a general
Hecke operator T'(m(p~*,p~)).
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Theorem 5.9. Let p be a prime and (k,1) € Ay. If p divides |D|, let Ty,; € HT(Qp//Kp,wp)
as in Corollary 4.7. If (p,|D|) = 1, let Tiy = Ly mpk phk, ids,, € H(Qp//Kp,wp) be as in
Theorem 4.12. Further, let T'k1 be as in Definition 5.6 and

T(m(p~*,p™")) the Hecke operator as defined in Section 2. Then for any f € S.(pr) we have

(5.17) TRl (Fy) = B 040G =0 g (o 1) 17

where Fy is the automorphic form related to f via the map <.

Proof. We know from Lemma 5.8 that for any g = 7(ge0 X k) € G(A) we have

TTH(Fp)(¥(goo X k) = T 8 (F5)((gos x 17)(1 x k))
= wp(k) TR (Fp) (goo X 1y).

The same holds for Fp(k+l)(% since it is an element of A, (wy). Hence, it suffices

“UT(m(pk ) f
to prove (5.17) for g = goo x 15.

The proof is an adaptation of the one of Lemma 3.7 in [Ge]. We have
Tk (Fr)(9) = Z Rk (tp(@p)) Fr(gip(xp))
Tp€Qp/Kp

= > BT (1 () Fy (gep (),

xp€lCpm(pF ,p!)ICp /Ky

(5.18)

where the last equation is due to Remark 5.7, i), and the fact that T} ; is supported on the
double coset K,m(p*,p')K,. Following an idea of Gelbart, we set for z, € K,m(p*, p')K, /K,

v = (Tps... Tp,...) € G(Q),
k(xp):(:Uljl,...,xgl,lp,xgl,...)EIC,
.’L';l eroa

where the 1, in k(z,) is at p-th place. With these notations it is easily verified that
tp(Tp) = ’7(35;1 X k(zp))-
Therefore, the right-hand side of (5.18) becomes
Z RTk’l(Lp(ffp))Ff(W(ﬁU;lgoo X k(xp)))-
zp€Lpm(p*,ph)Kp/Kp

Using the fact that Fy € Ai(wy) and equation (5.6) subsequently, we find that the latter
expression is equal to

> RT (1 (p) )y (k(p)) " Fr (2, goo X 15)
zpelpm(pF ,p)Kp /Kp

= > 3@y 900 )Y Fa(@y  gaot) BT (1 () (wy (K(p)) ')

xp € Cpm(pF ,pH)ICpKp AeD
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Decomposing RT*! and w ¢ into its local factors, yields

Z j(xp_lgomi)_ﬁx
zpepm(pF,ph)Kp/Kp
1 “1yv—1 (A —1 (A
D iy goci) @iyl ) 0™ © Tia o) (1) ™).
AeD a7p
To further simplify the right-hand side of (5.19), we evaluate wy(z,, D=1 and T} (zp) on a

concrete set of representatives x,. To this end, we first assume k < [. It is easily seen that
Lemma 13.4 of [KL] carries over to our situation. Keeping this in mind, we can conclude that

{:USJ, = m(p*, p*) (% pl,i,s) |s=1,...1—-k—-1,b€ (Z/pSZ)X}

l—k — —
{as = mt, ") (P10 Tbe 2/ 2 U {mGF, pym(1 ') |
is a set of representatives of K,m(p*, p')KC, /K, for any prime p. We now distinguish the cases

p | |D| and p 1 |D|. The latter is easier and will be postponed to the end of the proof.
The decomposition

(5.19)

S

(5.20)

(5.21) wt= (5 30) m p e (=) € T p T
with rp® 4+ bt = 1 and
(5.22) iL'b_l = wm(p_k,p_l)w_ln(—b) € I‘m(p_k,p_l)I‘

can easily be verified. Since I' C K, for all primes g, this decomposition can also be interpreted
as decomposition in K,m(p~,p~H)K, for all primes q. If ¢ # p, we may utilize Definition 3.4
and obtain

wql@ )7 = g (=0 0) oy (mp ™, p7) (50 )7
wo(z; ) = wa(w ™ (=) wg(m(p™", ™)) T wg(w) .
By Definition 4.1, we further have

-1
Tia(wsp) = wp(n-(—p' ")) 0 Ta(m(p®,p')) 0 wp((’; » ) );

Tia(a3) = wp((w™'n(=0)) 1) o Tea(m(p®, p')) 0 wp(w™).

Following the proof of Theorem 4.8, i), we obtain

(5.23)

(5.24)

kI — 9(Dg)  (pt=01/24,) g(Dq)  (pt=k/2,)
5.25 w mpk,pl 1 (“‘1):7gp V= 27, @)
( ) Q( ( )) q gpk(Dq) q gpl (Dq) q
k+l1

where for the last equation we have used that p"** is a square and the last equation of (3.18).
Moreover, comparing (4.7) with (3.20), it becomes apparent that the identity

Tioa(m(p*, ")) o) = wy(m(p~*, p) " o)

holds. Replacing w, '(2,) and Ty () in (5.19) with the expressions calculated before and
piecing together the local Weil representations, we arrive at

) _ g(D]JJ_) (p(p(l—k)ﬂ)\)

(5.26) wr(m(p~",p™) "W = 0y (D1
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and
(5.27) TTk’l(F>(goo X 1f) = Z j(%;lgoo, i) " Z fA(xglgooi)wf(mgjl)il@()\)-
zp€Rpm(p*,ph)Kp/Kp AeD
On the other hand, it is well known that
{egpls=1.1—k=10e(Z/p°L)*} U{z" [beZ/p" T} U {mp" p) "}

is a set of representatives of T\I'm(p~*, p~")T. In view of (5.21) and (5.22) we find

pr(esd) ™ = pr(n (=05 0) L pnmp, ™) on (5,0 )7

pr(zy )7 = pr(w ™ (=) oL (m(p~*, p7h)) T pr(w) Y,

4
where pr(m(p™,p7)) " tey = %%(H)/z)\ for all primes by (2.12) or [St2], (4.10).
P p

Thus, taking (5.26) and (3.9) into account, we find that the right-hand side of (5.27) equals
§(goori) 7" > (2, 9008) ™" Y fr(@(goot))pr () ex
a:EF\Fm(p*k,p*l)F XeD
= F(p2l)1—k/2T(m(p—k ) f (goo X 1f).

For k = [ the set K,m(p*, p*)K, /K, consists only of the element m(p*,p*). Following the
steps made before for the case k < [, one finds

1
T (F)(goo X 15) = (?Dl)) ' > Aalgeoi) ™
AeD
9(Dy)

= P Fr(geo X 14).
g (DE) T

On the other hand, the Hecke operator T(m(p~*,p~*)) acts just by multiplication with
9(Dy)
9,k (Dg)?

The proof for p 1 [D| starts again with (5.19). Let Tiy = Lic p(pk pr)i, - ids,, Then, since

and once again the desired result follows.

Sr, = (Cgoéo) and w), is trivial,

Th(2p) (wp(1p) " ol0) = Tho s (m(p*, p1))
(0)

Therefore,
®Wq _1 M) ® T (zp) (wp(lp) ™ 1@)0)) = Wf(fv;l)_léo()\)-
qFp
By means of (5.25) and (5.26) and the decompositions of 2,1 above, the identity (5.17) follows
as
k- 9(D)
prm(p=*,p7") T er = e
9p(D)

(cf. [St2], (4.10) and note that D(p') = D if (p,|D|) = 1). O
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Remark 5.10. i) The identity (5.17) can be rephrased with the help of the isomorphism
/. Let F' € Ag(wy) with the associated modular form fr € Si(pr) and fTTM(F) the
modular form corresponding to 77k (F). Then (5.17) is equivalent to
k+1 2—1 —k , -l
(5.28) Trtiea gy = PSP T (m(p*, p7) (f).
ii) It is also an immediate but important consequence of Theorem 5.9 that f € S, (pr) is
a common eigenform for the Hecke operators T(m(p~",p~")) for alle primes p and all
(k,1) € A4 if and only if the associated automorphic form Fy is a common eigenform
for the operators 77+ for all primes p and all generators Ty; € HT(Q,//Kp,wp)
(H(Qp//Kp,wp) if p and |D| are coprime). Remark 5.7, ii), allows us to extend this
statement to the whole Hecke algebra HT(Q,//Kp,w,) (and H(Q,//Kp,wp)). Thus,
T
T (Fy) = Ay p(T) Fy
for all T € HY(Q,//Kp,wp) (and H(Qp//Kp,wp)) if and only if f € S.(pr) is a
common Eigenform for all Hecke operators T(m(p~*,p™")). As in the classical scalar
valued theory, we may then conclude that the map
Ay HT(Qp//Kpywyp) = C, T+ App(T),
associated to an eigenform F' € A, (wy) defines a C- algebra homomorphism.
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