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Abstract. We present a ready to compute trace formula for Hecke operators on
vector-valued modular forms of integral weight for SL2(�) transforming under the
Weil representation. As a corollary, we obtain a ready to compute dimension formula
for the corresponding space of vector-valued cusp forms, which is more general than
the dimension formulae previously published in the vector-valued setting.
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1. Introduction. Trace formulae in general and especially trace formulae for
Hecke operators on a space of modular forms are an important tool in the theory
of modular forms. For instance, they provide the possibility to compute the dimension
of the underlying space of cusps forms. The eigenvalues λ(n) of the Hecke operators
T(n) and the Fourier coefficients a(n) of cusp forms are fundamental objects and
vital for the study of modular forms. An explicit trace formula allows to study the
arithmetic properties of these eigenvalues and thereby the corresponding properties
of the Fourier coefficients a(n) of a simultaneous eigenform, given that there is a
simple relation between eigenvalues and coefficients. Therefore, a trace formula also
provides an approach to access the Fourier coefficients of cusp forms. Furthermore,
the trace formula is useful to understand class numbers of binary quadratic forms.
There are several versions of trace formulae for different types of modular forms and
applications, see e.g. [1, 13, 20, 23, 19, 24, 31, 25, 26, 27, 32, 35], and [33].

Vector-valued modular forms and more general vector-valued automorphic forms
associated to the Weil representation play an important role in many recent papers see
e.g. [3, 4, 6, 9] and [30]. One reason for this is their connection to the so called singular
theta lift, [3] and [6], which allows interesting applications in geometry and algebra.

The main goal of the present paper is to give a trace formula for Hecke operators
on vector-valued modular forms for the Weil representation. It is intended to be explicit
enough to be used on a computer. There are some papers which present a trace formula
for vector-valued automorphic forms in a more general setting, see e.g. [22] or Hejhal’s
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books [17] and [18]. However, the trace formulae given there cannot be simply quoted
since they are either not directly applicable to our situation or not explicit enough.

Let us now describe the results of this paper: Let (L, (·, ·)) be an even non-
degenerate lattice of type (b+, b−) where (·, ·) denotes a bilinear form on L with
associated quadratic form x �→ x2/2, L′ be the dual lattice of L and L′/L the
discriminant group. For the introduction, we restrict ourselves to the case that the
signature b+ − b− of L is even. In this paper, we consider vector-valued modular forms
which transform under a particular representation. This representation, defined by
(2.2) and (2.3), is a representation of SL2(�) on the group ring �[L′/L],

ρL : SL2(�) −→ GL(�[L′/L]),

which is an example of a so-called Weil representation. A modular form of weight k ∈ �

and type ρL for SL2(�) is a holomorphic function f : � −→ �[L′/L] which satisfies

f (γ τ ) = (cτ + d)kρL(γ )f (τ )

for all γ = ( a b
c d

) ∈ SL2(�) and which is holomorphic at the cusp ∞. The space of these
modular forms is denoted by Mk,L and the space of cusp forms by Sk,L.

There are several ways to establish a trace formula. Our approach is an adaption
of the papers [39] and [23] to the situation of vector-valued modular forms of type
ρL. One important step in these papers is the construction of a kernel function for the
underlying space of cusp forms with respect to the Petersson scalar product. Here, we
will show that

hβ,1(τ, τ ′) =
∑

γ∈SL2(�)

φ(γ, τ )−2k(γ τ + τ ′)−kρ−1
L (γ )eβ

is a kernel function for Sk,L with respect to the Petersson scalar product, see Theorem
5.6. Then, similar to the papers above quoted, the trace of the Hecke operator T(n)
can be expressed in terms of the integral∫

SL2(�)\�

〈hβ,n(τ,−τ ), eβ〉 Im(τ )kdμ(τ ), (1.1)

where hβ,n is a slightly more general vector-valued function than hβ,1. These results are
valid if the signature sig(L) = b+ − b− of L is even and also if sig(L) is odd.

The rest of the paper deals with the evaluation of (1.1), see the proof of Theorem
6.3. For these calculations we limit ourselves to the case of even signature of L because
it seems that the case of odd signature involves tedious computations, which should
be done in a separate paper. It turns out that the character of the Weil representation
occurs in the trace formula. Therefore, an explicit expression for the character of the
Weil representation is derived, see Theorem 3.1. The case |L′/L| = p, where p is a
prime, is treated separately and the character of the Weil representation is described
very explicitly in terms of the Kronecker symbol, see Theorem 3.3.

Finally, as a corollary, a dimension formula for the space Sk,L is presented. As
already mentioned more general trace formulae exist already in the literature which
lead to more general dimension formulae than the one provided in the paper (see e.g.
[14]). However, our dimension formula has the advantage that it applies directly to
the special setting of vector-valued modular forms for the Weil representation. And as
such it seems (to the best of our knowledge) to be a generalisation of the published
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dimension formulae for Sk,L, since it does not rely on the condition 2k ≡ − sig(L)
(mod 4). For other examples of dimension formulas in the vector-valued setting see [4]
and [7].

It would be interesting to use the derived trace formula to calculate eigenvalues
of Hecke eigenforms and to study their arithmetic properties. Moreover, it would be
interesting to try to determine the distribution of the eigenvalues of Hecke operators
which will be done in forthcoming papers.

2. The Weil representation and vector-valued modular forms. In this section, we
introduce the notation that is used throughout this paper. Furthermore, we recall
some basic facts concerning the Weil representation and vector-valued modular forms
associated to the Weil representation where we essentially follow [6] and [10].

The group GL+
2 (�) = {M ∈ GL2(�); det(M) > 0} acts on the upper half-

plane � = {τ = x + iy ∈ �; Im(τ ) > 0
}

and on � ∪ � ∪ {∞}, respectively, by linear
fractional transformations. For M = ( a b

c d

) ∈ GL+
2 (�) and τ ∈ � let j(M, τ ) :=√

cτ + d where we choose the principal branch of the square root. As is common,
we introduce the double cover G̃L

+
2 (�) of GL2(�). This group is the set of

pairs (M, φ(M, τ )) where M = ( a b
c d

) ∈ GL+
2 (�) and φ(M, τ ) = det(M)−1/4j(M, τ ) or

φ(M, τ ) = − det(M)−1/4j(M, τ ). The multiplication of two elements (M1, φ1(M1, τ )),
(M2, φ2(M2, τ )) ∈ G̃L

+
2 (�) is given by

(M1, φ1(M1, τ ))(M2, φ2(M2, τ )) = (M1M2, φ1(M1, M2τ )φ2(M2, τ )).

A non-scalar element M ∈ GL+
2 (�) is defined to be elliptic, parabolic or hyperbolic if

it satisfies

tr(M)2 < 4 det(M), tr(M)2 > 4 det(M), or tr(M)2 = 4 det(M).

Moreover, we call an element M̃ = (M, φ(M, τ )) ∈ G̃L
+
2 (�) elliptic, hyperbolic or

parabolic, respectively, if M has the corresponding property. If G is a subset of
GL+

2 (�), we write G̃ for its inverse image under the covering map G̃L
+
2 (�) → GL+

2 (�).
Throughout this paper �(1) denotes the full modular group SL2(�). It is well
known that the integral metaplectic group �̃(1) is generated by T = (( 1 1

0 1

)
, 1
)
, and

S = (( 0 −1
1 0

)
,
√

τ
)
. One has the relations S2 = (ST)3 = Z with Z = (( −1 0

0 −1

)
, i
)

being
the standard generator of the centre of �̃(1).

By (L, (·, ·)) we denote an even non-degenerate lattice of type (b+, b−), i.e. a free
�− module of finite rank. Here (·, ·) is a bilinear form and q : x �→ x2/2 = 1

2 (x, x) the
corresponding quadratic form which takes values in � on L. By sig(L) we mean the
signature b+ − b− of L. We write

L′ = {x ∈ L ⊗ � (x, y) ∈ � for all y ∈ L
}

for the dual lattice of L. Since L is assumed to be even, L ⊂ L′ and L′/L is a finite
abelian group. For the rest of the discussion, let N ∈ � be the smallest integer such that
Nx2/2 ∈ � for all x ∈ L′. N is called the level of L. For n ∈ � we define the subgroups

(L′/L)n = {μ ∈ L′/L; ∃ ν ∈ L′/L : μ = nν
}
,

(L′/L)n = {μ ∈ L′/L; nμ = 0
}
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and the subset

(L′/L)n∗ = {μ ∈ L′/L; (μ, ν) ≡ nν2/2 (mod 1) for all ν ∈ (L′/L)n
}

of L′/L.

PROPOSITION 2.1. (L′/L)n∗ is a coset of (L′/L)n in L′/L.

Proof. See [28] or [16], Proposition 1.34, for a proof. �
We adopt the following notation for (L′/L)n∗ from [28]. We obviously have

(L′/L)n∗ = μn + (L′/L)n,

where μn denotes a coset representative. For an element ν = μn + nμ ∈ (L′/L)n∗ we
define

ν2
n/2 := nμ2/2 + (μn, μ). (2.1)

Proposition 2.2 in [28] shows that (2.1) is well defined.

The next proposition gives a criterion when (L′/L)n∗ is equal to (L′/L)n. This criterion
is based on the concept of Jordan blocks which is described e.g. in [29] or [36].

PROPOSITION 2.2 ([4], p. 324, [28], p. 6). (L′/L)n∗ is equal to (L′/L)n if and only if
the 2-adic Jordan block of type 2k with 2k‖n is even.

For the discriminant form (L′/L, q) having the above properties, we introduce the
Weil representation associated to (L′/L, q). The Weil representation is a representation

ρL : �̃(1) −→ GL(�[L′/L])

of �̃(1) on the group ring �[L′/L] defined by

ρL(T)(eλ) = e(λ2/2)eλ, (2.2)

ρL(S)(eλ) = e(− sig(L)/8)√|L′/L|
∑

μ∈L′/L

e(−(λ,μ))eμ. (2.3)

Note that

ρL(Z)(eγ ) = e(− sig(L)/4)e−λ. (2.4)

Here e(z) = e2π iz for z ∈ � and (eλ)λ∈L′/L denotes the standard basis of �[L′/L]. From
(2.4) it follows that Z2 acts trivially if the signature of L is even. Therefore, ρL factors
through �(1) in this case. Moreover, if the signature of L is even, it can be proved
that the Weil representation is trivial on the principal congruence subgroup �(N) (see
e.g. [12], Chapter 3, Theorem 3.2), where N is the level of L. Therefore, ρL factors
through the finite group �(1)/�(N) ∼= SL2(�/N�). If the signature of L is odd, the
Weil representation is trivial on the group

�(N)∗ =
{((

a b
c d

)
,
( c

d

)√
cτ + d

)
;
(

a b
c d

) ∈ �(N)
}

� �̃(1),
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where
( c

d

)
is the Kronecker symbol, see [10], p. 253 for a sketch of a proof. In this case,

the Weil representation factors through the finite group �̃(1)/�(N)∗. Denote by gn(L)
the Gauß sum

gn(L) =
∑

λ∈L′/L

e(nλ2/2). (2.5)

For n = 1, Milgram’s formula holds

g(L) := g1(L) =
√

|L′/L|e(sig(L)/8) (2.6)

(see [21], Appendix 4).
We now define vector-valued modular forms of type ρL. With respect to the

standard basis a function f : � → �[L′/L] can be written in the form

f (τ ) =
∑

λ∈L′/L

fλ(τ )eλ.

The following operator generalises the usual Petersson slash operator to the space of
all those functions: For k ∈ 1

2 � define

f |k,L (γ, φ) = φ(γ, τ )−2kρL(γ, φ)−1f (γ τ ). (2.7)

A holomorphic function f : � → �[L′/L] is called a modular form of weight k and
type ρL for �̃(1) if f |k,L (γ, φ) = f for all (γ, φ) ∈ �̃(1), and if f is holomorphic at
the cusp ∞. The last condition means that every component fλ of f has a Fourier
expansion of the form fλ(τ ) =∑n≥0, n∈�+λ2/2 c(λ, n)e(nτ ). We denote by Mk,L the space
of all such modular forms, by Sk,L the subspace cusp forms. For more details see e.g.
[6] or [10]. Note that formula (2.4) implies that Mk,L = {0} unless

2k ≡ sig(L) (mod 2). (2.8)

Therefore, if the signature of L is even, only non-trivial spaces of integral weight can
occur, if the signature of L is odd only non-trivial spaces of half-integral weight can
occur. The Petersson scalar product on Sk,L is given by

(f, g) =
∫

�(1)\�

〈f (τ ), g(τ )〉 Im(τ )kdμ(τ ) (2.9)

where

dμ(τ ) = dx dy
y2

denotes the hyperbolic volume element and〈 ∑
λ∈L′/L

aλeλ,
∑

λ∈L′/L

bλeλ

〉
=
∑

λ∈L′/L

aλbλ (2.10)

is the standard scalar product on the group ring �[L′/L]. For λ,μ ∈ L′/L and (γ, φ) ∈
�̃(1) we define the coefficient ρλμ(M, φ) of the representation ρL by

ρλμ(γ, φ) = 〈ρL(γ, φ)eμ, eλ〉. (2.11)
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3. Computation of the character of the Weil representation. The goal of this
section is to present an explicit formula for the expression

tr(ρL(γ̃ )) =
∑

μ∈L′/L

〈ρL(γ̃ )eμ, eμ〉 (3.1)

for γ ∈ �(1). It will turn out that the character of the Weil representation (3.1) occurs
as a part of the trace of the Hecke operator T(n). Our formula is based on an explicit
formula for the Weil representation given by Strömberg in [36], p. 510 and Theorem 6.4:

ρL(γ, j(γ, τ ))eμ = ξ (γ )
√

|(L′/L)c|/|L′/L|
∑

ν∈(L′/L)c∗
e(aν2

c /2 + bdμ2/2 + b(μ, ν))eν+dμ,

(3.2)

where γ =
(

a b
c d

)
is an element of �(1).

The constant ξ (γ ) is specified in the cited theorem. This formula is valid for odd and
even signature of the lattice L which implies the same for the formula of the character.

THEOREM 3.1. Let γ = ( a b
c d

) ∈ �(1) and μc ∈ L′/L be a coset representative of
(L′/L)c∗ in L′/L. Then the character of ρL((γ, j(γ, τ )) can be written as

ξ (γ )
√

|(L′/L)c|/|L′/L|e
(

− a
c
μ2

c/2
) ∑

λ∈L′/L,
(1−d)λ−μc∈(L′/L)c

e
(

1
c

(a + d − 2)λ2/2
)

(3.3)

if c �= 0 and as

e((− sig(L)/8)(1 − sgn(d))
∑

μ∈L′/L,
μ=aμ

e(abμ2/2) (3.4)

if c = 0.

Proof. The character of ρL(γ, j(γ, τ )) is given by (3.1). Since for every λ ∈ L′/L
and every ν = μc + μ′ ∈ (L′/L)c∗ the equation μc + μ′ + dλ = λ is fulfilled for all
μ′ ∈ (L′/L)c with μ′ = (1 − d)λ − μc we obtain with the help of (2.1) and (3.2)

tr(ρL(γ̃ ))

= ξ (γ )
√

|(L′/L)c|/|L′/L|
∑

λ∈L′/L

〈
∑

ν∈(L′/L)c∗
e(b(ν, λ) + bdλ2/2)e(aν2

c /2)eν+dλ, eλ〉

= ξ (γ )
√

|(L′/L)c|/|L′/L|
×

∑
λ∈L′/L

(1−d)λ−μc∈(L′/L)c

e
(
bdλ2/2 + b((1 − d)λ, λ) + ac(((1 − d)λ − μc)/c)2/2

+ a(((1 − d)λ − μc)/c, μc)
)

= ξ (γ )
√

|(L′/L)c|/|L′/L|
∑

λ∈L′/L,
(1−d)λ−μc∈(L′/L)c

e(2bλ2/2 − bdλ2/2

+ a
c

(((1 − d)λ)2/2 − μ2
c/2)).
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The last equation can be verified by a straightforward computation. Since

e(2bλ2/2 − bdλ2/2 + a
c

((1 − d)λ)2/2) = e
(1

c
λ2/2 (a + d(ad − bc) − 2(ad − bc))

)
the last expression above for the trace can be written as

ξ (γ )
√

|(L′/L)c|/|L′/L|e
(
− a

c
μ2

c/2
) ∑

λ∈L′/L
(1−d)λ−μc∈(L′/L)c

e
(1

c
(a + d − 2)λ2/2

)
.

The formula for the character for the case c = 0 follows immediately from
Shintani’s formula, see e.g. [6], (1.5). �

REMARK 3.2. Note that the formula (3.3) for the character of the Weil
representation is independent of the choice of μc.

The following theorem provides a very explicit formula for the character of the
Weil representation for the special case of |L′/L| = p where p is an odd prime p. In this
case it can be shown that the level of L is p (see [8], p. 50).

THEOREM 3.3. Let p be an odd prime and |L′/L| = p. Then we have for γ = ( a b
c d

) ∈
�(1)

tr(ρL(γ )) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
a+d−2

p

)
, if 2 �≡ a + d (mod p),

e(sig(L)/8)
(

−c
p

)√
p, if 2 ≡ a + d (mod p) and (c, p) = 1,

e(sig(L)/8)
(

b
p

)√
p, if 2 ≡ a + d (mod p) and b �≡ c ≡ 0 (mod p),

p, if 2 ≡ a + d (mod p) and b ≡ c ≡ 0 (mod p).
(3.5)

Proof. The proof is based on the formula (3.3) and the two formulae in [28],
Proposition 4.8, which allow an explicit description of the expression ξ (γ ) in (3.3) for
the cases (c, p) = 1 and p | c. To further simplify Scheithauer’s formulas in [28] we use
the fact that oddity(L′/L) ≡ 0 mod 8 if the level of L is odd, see [38], Lemma 5.8, and
Theorem 1.5.2 in [2]. �

REMARK 3.4. The formula (3.5) can also be found in [37], Theorem 1A, p. 222 and
the example on p. 224. However, there it is proved in a different way.

4. Hecke operators on vector-valued modular forms. In this chapter, we briefly
recall how Hecke operators on vector-valued modular forms can be defined. All details
can be found in [10]. Note that in this paper, we consider only Hecke operators T(n),
where n is coprime to the level N of L. In this case the Hecke operators can be defined
as usual by the action of a suitable Hecke algebra.

4.1. The case of even signature. In order to define Hecke operators on Mk,L

one has to extend the Petersson slash operator in (2.7) to some suitable group
which is isomorphic to a subgroup of GL+

2 (�). In particular, this means that the
Weil representation has to be extended to this group. As a starting point the Weil
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representation, viewed as a representation of the finite group S(N) := �(1)/�(N),

ρL(A)eλ = ρL(s(A))eλ, A ∈ S(N), (4.1)

can be extended to a group isomorphic to a subgroup of GL2(�/N�). Here s :
S(N) → �(1) is a section, that is πN ◦ s = idS(N), where πN denotes the component-wise
reduction modulo N. Let Q(N) be the group

Q(N) = {(M, r) ∈ GL2(�/N�) × U(N); det(M) ≡ r2 (mod N)}

with the product defined component-wise. Here U(N) = (�/N�)∗. By M �→ (M, 1)
the group S(N) can be embedded into Q(N). Moreover, for (M, r) ∈ Q(N) the map
(M, r) �→ (M

(
r 0
0 r

)−1
, r) defines an isomorphism Q(N) ∼= S(N) × U(N). Then the Weil

representation of U(N) can be defined as follows

ρL

((
r 0
0 r

)
, r
)

eλ = g1(L)
gr(L)

eλ (4.2)

and on the whole group Q(N) by

ρL(M, r)eλ = ρL(M
(

r 0
0 r

)−1
, 1) ◦ ρL(

(
r 0
0 r

)
, r)eλ. (4.3)

Since the assignment r �→ g1(L)
gr(L) defines a character of U(N) (see [10], p. 256) we

obtain that (4.2) is indeed a representation. It is easily seen that (4.3) extends the
Weil representation to a representation of Q(N). Consider the groups

G(N) = {M ∈ GL+
2 (�); ∃n ∈ � with (n, N) = 1 such that nM ∈ M2(�)

and (det(nM), N) = 1} (4.4)

and

Q(N) = {(M, r) ∈ G(N) × (�/N�)∗; det(M) ≡ r2 (mod N)
}
. (4.5)

The modular group �(1) can be embedded into Q(N) by γ �→ (γ, 1). The component-
wise reduction πN maps the group Q(N) into the group Q(N). Therefore, the Weil
representation can be extended to the group Q(N) by

ρL : Q(N) −→ GL(�[L′/L]), (M, r) �→ ρL(πN(M), r), (4.6)

where ρL on Q(N) is defined by (4.3). The action of Q(N) on vector-valued functions
is then given by

f |k,L (M, r) =
∑

λ∈L′/L

(fλ |k M)ρ−1
L (M, r)eλ (4.7)

for f =∑λ∈L′/L fλeλ, where

f |k M = det(M)k/2j(M, τ )−2kf (Mτ ) (4.8)

is the usual Petersson slash operator. It is easily seen that (4.7) extends the action (2.7)
of �(1) to the group Q(N).
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4.2. The case of odd signature. If the signature of L is odd, there are only non-
trivial vector-valued modular forms of half-integral weight. In this case (4.6) and (4.8)
define only projective actions of the group Q(N). In order to obtain honest actions one
needs to introduce appropriate central extensions ofQ(N). First, we consider the action
on �[L′/L]. By [10], p. 253 and p. 259ff. (4.6) yields only a projective representation
determined up to a factor ±1, that is

ρL : Q(N) −→ GL(�[L′/L])/{±1}, g �→ ρL(g).

Choosing a section s : GL(�[L′/L])/{±1} → GL(�[L′/L]) gives rise to a cocycle c :
Q(N) × Q(N) → {±1} and a central group extension

Q1(N) = Q(N) × {±1}.

By setting

ρL(M, r, t) = tρL(M, r)

for (M, r, t) ∈ Q1(N) we obtain a representation of Q1(N). For (γ, 1) ∈ �(1) × {1} ⊂
Q(N) we set

ρL(γ, 1) = ρL(γ, j(γ, τ )). (4.9)

This choice of s yields an injective homomorphism of �̃(1) into Q1(N)

�̃(1) −→ Q1(N), (γ,±j(γ, τ )) �→ (γ, 1,±1). (4.10)

Moreover, we set

ρL

((
m2 0
0 1

)
, m
)

eλ = em−1λ. (4.11)

On the other hand, if the weight k ∈ � + 1
2 the action (4.8) defines a cocyle, which

is determined by the square root of the automorphic factor. One can show that this
cocyle is not isomorphic to the cocycle c on the group Q(N). However, their restriction
to �̃(1) are isomorphic (compare with [10], p. 260 and with [5], Chapter IV, Section
1–3, for the theory of group extensions and group cohomology used before).

Therefore, in order to define an action on vector-valued functions one has to define
a central group extension

Q2(N) = {(M, φ(M, τ ), r, t); M ∈ G(N), r ∈ (�/N�)∗,

det(M) ≡ r2 mod N, t ∈ {±1}} (4.12)

of Q1(N) by {±1}. Because of (4.10) there is an injective homomorphism

L : �̃(1) −→ Q2(N), (γ,±j(γ, τ )) �→ (γ,±j(γ, τ ), 1,±1). (4.13)

For an element M̃ = (M, φ(M, τ ), r, t) ∈ Q2(N), we set

ρL(M, φ(M, τ ), r, t) = ρL(M, r, t),
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that is, we compose the projection to the group Q1(N) with the Weil representation on
that group. By the definition of the embedding L, we have

ρL(L(γ )) = ρL(γ ) (4.14)

for γ ∈ �̃(1). Note that the Weil representation on Q(N) and Q2(N) is unitary with
respect to the scalar product (2.10). The action of Q2(N) on vector-valued functions
f =∑λ∈L′/L fλeλ is given by

f |k,L (M, φ(M, τ ), r, t) =
∑

λ∈L′/L

(fλ |k (M, φ))ρ−1
L (M, r, t)eλ, (4.15)

where f |k (M, φ) = φ(M, τ )−2kf (Mτ ).

4.3. Hecke operators. Let n ∈ � be coprime to the level N of L. The Hecke
operator T(n) will be defined in terms of the action of the Hecke algebra given by
the pair of groups (Q(N), �(1) × {1}) or (Q2(N),L(�̃(1))) depending on the parity of
the signature of the lattice L. The definition of the group Q(N) implies that we have
to assume that n is a square modulo N. Further, if the signature of L is odd one can
show that T(n) is zero unless n is a square in �, see [10], Proposition 4.9. Therefore, we
assume in the following section that (n, N) = 1 and

n ≡ r2 mod N, if sig(L) is even,

n = m2, if sig(L) is odd.
(4.16)

In order to keep the notation as simple as possible and to treat the cases of odd and even
signature in the following section simultaneously, we introduce the following notation:

� =
{

�(1) × {1} ⊂ �(1) × (�/N�)∗, if sig(L) even,

L(�̃(1)), if sig(L) odd,
(4.17)

where L denotes the embedding (4.13) and accordingly

M(n) =
{

�(
(

n 0
0 1

)
, r)�, if sig(L) even,

�(
(

n 0
0 1

)
, 1, m, 1)�, if sig(L) odd.

(4.18)

As usual, the Hecke operator is then defined by

f |k,L T(n) = nk/2−1
∑

M̃∈�\M(n)

f |k,L M̃, (4.19)

where the slash operator is given by (4.7) and (4.15) depending on the parity of the
signature of L. The following theorem is proved in [10], Theorem 4.12, p. 266.

THEOREM 4.1. Let m, n ∈ � be coprime and defined as in (4.16). Then the Hecke
operator T(n) is a linear operator on Mk,L taking cusp forms to cusp forms. It is self-
adjoint with respect to the Petersson scalar product (2.9). Moreover,

T(m)T(n) = T(mn).
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5. A kernel function. In the following, we define a vector-valued function which
turns out to be a kernel function of the Hecke operator T(n).

DEFINITION 5.1. Let n ∈ � be as in (4.16) and k ∈ 1
2 � with k > 2. Moreover, let

β ∈ L′ and τ, τ ′ ∈ �. Then hβ,n : � × � −→ �[L′/L] is defined by

hβ,n(τ, τ ′) =
∑

M̃∈M(n)

(τ + τ ′)−keβ |k,L M̃

=
∑

M̃∈M(n)

φ(M, τ )−2k(Mτ + τ ′)−kρ−1
L (M̃)eβ,

(5.1)

where the slash-action is in the variable τ and M ∈ G(N) is the projection of M̃ onto
the first component.

We extend the definition (2.11) for the coefficient of the representation to elements
M̃ ∈ M(n) by setting

ρδβ(M̃) = 〈ρL(M̃)eβ, eδ〉.
Then each component function of hβ,n can be written as∑

M̃∈M(n)

ρδβ(M̃−1)φ(M, τ )−2k(Mτ + τ ′)−k. (5.2)

Since the representation ρL factors through a finite group and k > 2 one can show
as in the scalar-valued case (see [39], p. 45 and [23], Theorem 1, p. 10) that for each
component δ the series (5.2) converges normally on � × � and is holomorphic in each
variable. Therefore, hβ,n is a holomorphic function in each variable. By Remark 5.2 (a)
below and the absolute convergence a standard argument proves that hβ,n is invariant
under the slash action |k,L of � with respect to the variable τ . Moreover, for all τ ′ ∈ �∑

M̃∈M(n)

φ(M, τ )−2k(Mτ + τ ′)−k

is a cusp form of the variable τ (see [23], Théorème 1, p. 10) which implies that hβ,n(·, τ ′)
is holomorphic at ∞. This means that hβ,n is a vector-valued cusp form with respect
to τ .

REMARK 5.2. Let n, n′ ∈ � be as in (4.16) and Ã ∈ M(n′). Then the following
equations hold:

(a)

hβ,n |k,L Ã =
∑

M̃∈M(n)

(
(τ + τ ′)−keβ |k,L M̃ |k,L Ã

)
.

(b)

hβ,1 |k,L T(n) = nk/2−1hβ,n.

Both the slash operator and the Hecke operator are applied with respect to the first
variable τ .
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Proof. (a) The first statement is essentially about interchanging the sum over M(n)
and the slash operator, which is allowed since (5.2) converges normally.

(b) For the second statement note that by the definition of the Hecke operator and (a)
we have

hβ,1 |k,L T(n) = nk/2−1
∑

Ã∈�\M(n)

hβ,1 |k,L Ã

= nk/2−1
∑

Ã∈�\M(n)

∑
γ∈�

(
(τ + τ ′)−keβ |k,L γ |k,L Ã

)
= nk/2−1

∑
M̃∈M(n)

(τ + τ ′)−keβ |k,L M̃.

�
We now define an integral operator on the space of vector-valued cusp forms.

DEFINITION 5.3. Let k ∈ 1
2 � with k > 2 and n ∈ � as in (4.16). For f ∈ Sk,L let

(Knf )(τ ′) =
∑

β∈L′/L

(∫
�(1)\�

〈f (τ ), hβ,n(τ,−τ ′)〉 Im(τ )kdμ(τ )
)

eβ. (5.3)

Note that the operator Kn is well defined on Sk,L since the integral is the Petersson
scalar product defined in (2.9).

LEMMA 5.4 (See [23], p. 42 or [39], p. 46). Let k > 2 be a real number and f : � → �

be holomorphic such that f (τ )(Im(τ ))k/2 is bounded on �. Then for all τ ′ ∈ �∫
�

(x − iy − τ ′)−kf (x + iy)yk−2dx dy = Ck

2
f (τ ′),

where

Ck = π

k − 1
i−k23−k. (5.4)

REMARK 5.5. Note that the constant Ck differs by a factor 1/2 from the
corresponding constant in [23], p. 10.

THEOREM 5.6. Let k ∈ 1
2 �, k > 2, and f =∑λ∈L′/L fλeλ ∈ Sk,L. Then, we have

(K1f )(τ ′) = Ckf (τ ′)

for all τ ′ ∈ �, where Ck is defined in Lemma 5.4.

Proof. The proof is essentially the same as the proof of [39], Theorem 1(i), pp. 45–
46. It suffices to prove that∫

�(1)\�

〈f (τ ), hβ,1(τ,−τ ′)〉 Im(τ )kdμ(τ ) = Ckfβ(τ ′) (5.5)
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for all β ∈ L′/L. LetF = �(1)\� be a fundamental domain for �(1). Since ρL is unitary
with respect to the scalar product (2.10), we obtain that〈

f (τ ), φ(γ, τ )−2kρ−1
L (γ ) (γ τ − τ ′)−keβ

〉
Im(τ )k

= 〈φ(γ, τ )2kρL(γ )f (τ ), (γ τ − τ ′)−keβ

〉
Im(γ τ )k

(5.6)

for all γ ∈ �. Therefore, since f is a vector-valued modular form, we get∫
F

〈
f (τ ),

∑
γ∈�

(τ − τ ′)−keβ |k,L γ

〉
Im(τ )kdμ(τ )

=
∫
F

∑
γ∈�

〈
f (τ ), (τ − τ ′)−keβ |k,L γ

〉
Im(τ )kdμ(τ )

=
(5.6)

∫
F

∑
γ∈�

〈
f (γ τ ), (γ τ − τ ′)−keβ

〉
Im(γ τ )kdμ(τ )

=
∑
γ∈�

∫
γF

〈
f (τ ), (τ − τ ′)−keβ

〉
Im(τ )kdμ(τ ).

Using the same arguments as in [39], p. 46 below formula (9), we obtain that the last
expression equals

2
∫

�

fβ(x + iy)(x − iy − τ ′)−kyk dx dy
y2

.

The result now follows from Lemma 5.4. �
THEOREM 5.7. Let k ∈ 1

2 �, k > 2 and n ∈ � as in (4.16). Then for all f ∈ Sk,L the
following equation holds for all τ ′ ∈ �

(Knf )(τ ′) = n−k/2+1Ck(f |k,L T(n))(τ ′), (5.7)

where Ck is defined by (5.4).

Proof. By Remark 5.2 (b) and the fact that the Hecke operator is self-adjoint with
respect to the Petersson scalar product (2.9) we have

(Knf )(τ ′) =
∑

β∈L′/L

(∫
�(1)\�

〈f (τ ), hβ,n(τ,−τ ′)〉 Im(τ )kdμ(τ )
)

eβ

= n−k/2+1
∑

β∈L′/L

(∫
�(1)\�

〈f (τ ), hβ,1(τ,−τ ′) |k,L T(n)〉 Im(τ )kdμ(τ )
)

eβ

= n−k/2+1
∑

β∈L′/L

(∫
�(1)\�

〈f (τ ) |k,L T(n), hβ,1(τ,−τ ′)〉 Im(τ )kdμ(τ )
)

eβ.

(5.8)

The statement of the theorem now follows from Theorem 5.6. �
For the next theorem, we use the following notation: By (fi)i=1,...,d we denote a basis

of simultaneous eigenforms of all Hecke operators T(n) in Sk,L, i.e. fi |k,L T(n) = λ(n)ifi

for all i = 1, . . . , d. Note that this basis is chosen to be orthogonal with respect to the
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Petersson scalar product (2.9). Furthermore, we assume that the basis is normalised
(i.e. (fi, fi) = 1) and write

fi =
∑

λ∈L′/L

f i
λeλ.

THEOREM 5.8. Let n ∈ � be as in (4.16). Then the following statements hold:
(a)

hβ,n(τ,−τ ′) = n−k/2+1Ck

d∑
i=1

λi(n)f i
β(τ ′)fi(τ ). (5.9)

(b)

tr T(n) = C−1
k nk/2−1

∑
β∈L′/L

∫
�(1)\�

〈
hβ,n(τ,−τ ), eβ

〉
Im(τ )kdμ(τ ). (5.10)

Proof. (a) Since hβ,n(·, τ ′) is a cusp form for every τ ′ ∈ � we can use the orthogonal
basis (fi)i=1,...,d to write

hβ,n(τ,−τ ′) =
d∑

i=1

(
hβ,n(·,−τ ′), fi

)
fi(τ )

=
d∑

i=1

(
fi, hβ,n(·,−τ ′)

)
fi(τ ).

(5.11)

With the help of (5.5) and (5.8) the right-hand side of (5.11) can be written in the form

n−k/2+1
d∑

i=1

(
fi |k,L T(n), hβ,1(·,−τ ′)

)
fi(τ ) = n−k/2+1Ck

d∑
i=1

λi(n)f i
β(τ ′)fi(τ ).

The last equation holds since the eigenvalues λi(n) are real.

(b) Replacing hβ,n with the right-hand side of (5.9) and using the normalisation of the
basis (fi)i=1,...,d we obtain

C−1
k nk/2−1

∑
β∈L′/L

∫
�(1)\�

〈
hβ,n(τ,−τ ), eβ

〉
Im(τ )kdμ(τ )

=
d∑

i=1

λi(n)
∫

�(1)\�

〈
fi,
∑

β∈L′/L

f i
βeβ

〉
Im(τ )kdμ(τ )

= tr T(n).

�

6. Computation of the trace of the Hecke operator. In this section an explicit
formula for the trace of the Hecke operator T(n) is computed. As a corollary a
dimension formula for the space of cusp forms Sk,L is presented. In contrast to
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Sections 3 and 5, we now assume that the signature of L is even. Therefore, only
vector-valued modular forms of integral weight are considered. By abuse of notation,
we will frequently write M = ( a b

c d

)
as well for an element of M(n) or � (see (4.17)),

respectively, as for an element of SL2(�) and remark that we identify � = �(1) × {1}
with �(1) by (M, 1) �→ M. Moreover, conjugating an element of M(n) with respect to
� is equivalent to conjugating the first component of this element with respect to �.
Thus in order to determine the �-conjugacy classes of elements of M(n) it suffices to
determine the �(1)-conjugacy classes of the corresponding matrices.

LEMMA 6.1. Let M ∈ M(n) and γ ∈ �. Then∑
β∈L′/L

〈ρL(γ −1Mγ )eβ, eβ〉 =
∑

δ∈L′/L

〈ρL(M)eδ, eδ〉. (6.1)

Proof. Since ρL is unitary with respect to 〈·, ·〉 we have

〈ρL(γ −1Mγ )eβ, eβ〉 =〈ρL(M)ρL(γ )eβ, ρL(γ )eβ〉

=
〈
ρL(M)

( ∑
δ∈L′/L

ρδβ(γ )eδ

)
,
∑

δ′∈L′/L

ρδ′β(γ )eδ′

〉
=

∑
δ,δ′∈L′/L

ρδβ(γ )ρδ′β(γ )〈ρL(M)eδ, eδ′ 〉.

Therefore,∑
β∈L′/L

〈ρL(γ −1Mγ )eβ, eβ〉 =
∑

δ,δ′∈L′/L

〈ρL(M)eδ, eδ′ 〉
∑

β∈L′/L

ρδβ(γ )ρδ′β(γ ).

By the orthogonality relations of the coefficients ρL(γ )

∑
β∈L′/L

ρδβ(γ )ρδ′β(γ ) =
{

1 if δ = δ′,
0 otherwise,

we obtain the result. �
The following lemma provides a formula for the Weil representation for special

triangular matrices.

LEMMA 6.2. Let N be the level of L and choose n ∈ �, (n, N) = 1, as in (4.16).
Moreover, let t, r ∈ � with (t, r) = 1 and t2 = 4n. Then

((
t/2 r
0 t/2

)
, t/2

)
∈ M(n) and

ρ−1
L

( (
t/2 r
0 t/2

)
, t/2

)
eμ = gt/2(L)

g(L)
e
(− r(t/2)−1μ2/2

)
eμ, (6.2)

where (t/2)−1 denotes the inverse of t/2 in (�/N�)∗.

Proof. This is clear because of the equation

ρ−1
L

( (
t/2 r
0 t/2

)
, t/2

)
= ρL

( (
1 −r(t/2)−1

0 1

)
, 1
)
ρ−1

L

( (
t/2 0
0 t/2

)
, t/2

)
and the definitions (4.2), (4.3) and (4.6) of the Weil representation on Q(N). �
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In the following, we derive an explicit formula for the integral (5.10). It is the
main result of this paper. In order to state the theorem we provide some notation: For
x ∈ � let [x] be the greatest-integer function max{n ∈ �; n ≤ x} and B(x) the function
x − [x]. Denote by ∼� the following equivalence relation on M(n):

M ∼� M′ ⇐⇒

⎧⎪⎨⎪⎩
M and M′ are �-conjugate,

M and M′ are parabolic and γ M is �-conjugate

to M′ for some γ ∈ �M,

where �M = {γ ∈ �; γ M = Mγ } is the centraliser of M. We also define δ1(n) := 1 if
n = m2 for some integer m and δ1(n) := 0 otherwise and write m−1 for the inverse of m
in (�/N�)∗.

THEOREM 6.3. Let L be an even non-degenerate lattice with sig(L) even, k ∈ � with
k > 2 and n ∈ � be as in (4.16). Furthermore, let M(n) and � be defined as in (4.18) and
(4.17), respectively. Then the trace of the Hecke operator T(n) on the space Sk,L is given
by

tr(T(n)) = A1 + A2 + A3,

where

A1 = δ1(n)n−1 k − 1
24

gm(L)
g(L)

(|L′/L| + e(− sig(L)/4)(−1)k|(L′/L)2|
)

(6.3)

is the contribution of the scalar matrices,

A2 = −δ1(n)
4

nk/2−1 gm(L)
g(L)

∑
v∈�/m�

(C1(v) + C2(v)) (6.4)

with

C1(v) =
∑

μ∈L′/L

e(−vm−1μ2/2)e
(

− v

m
B(−μ2/2)

)
×
{

(1 − 2B(−μ2/2)), if v
m ∈ �,

2
1−e(− v

m ) , if v
m /∈ �

(6.5)
and

C2(v) = e
(

− sig(L)
4

)
(−1)k

∑
μ∈(L′/L)2

e(−vm−1μ2/2)e
(

− v

m
B(−μ2/2)

)

×
{

(1 − 2B(−μ2/2)), if v
m ∈ �,

2
1−e(− v

m ) , if v
m /∈ �

(6.6)
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is the contribution of the parabolic matrices and

A3 = nk/2−1

( ∑
t∈�

D:=t2−4n<0

∑
a,b,c∈�
|b|≤a≤c

b2−4ac=D

2 Re
(
C−1

k I
(
A[a,b,c]

)
tr
(
ρ−1

L

(
A[a,b,c]

)))

+
∑
t∈�

t2−4n=u2

∑
0≤b<u

I
(
A[b,u]

)(
tr
(
ρ−1

L

(
A[b,u]

))+ tr
(
ρ−1

L

(− A[b,u]
))))

(6.7)

is the contribution of the elliptic and hyperbolic matrices. Here, A[a,b,c] and A[b,u] are

the matrices
( 1

2 (t−b) −c
a 1

2 (t+b)

)
and

( 1
2 (t−u) b

0 1
2 (t+u)

)
∈ M(n), respectively, and the numbers

I(A[a,b,c]) and I(A[b,u]) are given by

C−1
k I(A[a,b,c]) =

⎧⎨⎩
1

|�A[a,b,c] |
ρ1−k

ρ−ρ
, if c > 0,

1
|�A[a,b,c] |

ρ1−k

ρ−ρ
, if c < 0,

C−1
k I(A[b,u]) = 1

2

(
t − u
t + u

− 1
)−1( t − u

t + u

)k/2

,

(6.8)

where ρ = t
2 + i

√|D|
2 and ρ = t

2 − i
√|D|

2 are the roots of x2 − tx + n.

REMARK 6.4.
(a) The expressions C1(v) and C2(v) are independent of the choice of the

representative v which can be verified by a straightforward computation.
Further, the summands of the sums over L′/L in C1(v) and C2(v) are
independent of the choice of the representative μ since B(x + l) = B(x) for
any l ∈ �.

(b) The expressions I(A[a,b,c]) and I(A[b,u]) in (6.8) are up to the factor 2C−1
k the

expressions I(β) in [23], Theorem 2, and therefore well defined.

Proof. The proof of the theorem is based on the proof of Theorem 1 in [35],
pp. 183–184 and the arguments of [23], Chapter 2 and Chapter 3.

In the following, we compute the contribution to the trace of the elliptic,
hyperbolic, parabolic and cuspidal-hyperbolic elements to the trace. In order to simplify
the formulae in the proof, we use the notation

fM(τ ) = φ(M, τ )−2k(Mτ − τ )−k.

Since the Weil representation on M(n) factors through a subgroup of the finite
group GL2(�/N�) the factor 〈ρ−1

L (M)eμ, eμ〉 is bounded for all M ∈ M(n). Therefore,
all matters of convergence do not depend on the factor coming from the Weil
representation and can be treated as in the case of the scalar valued trace formula.
In fact, all of the following steps can be justified with the same arguments given in [23]
or [39].

The contribution of the scalar elements: It is easy to see that M(n) does not contain any
scalar elements unless n = m2. If n = m2 then M(n) contains exactly the two scalar
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elements that are represented by

Em =
(

m 0
0 m

)
and − Em =

(−m 0
0 −m

)
which belong to two different conjugacy classes. Their contribution to the trace is

( ∑
μ∈L′/L

〈ρ−1
L (Em)eμ, eμ〉 + (−1)k

∑
μ∈L′/L

〈ρ−1
L (−Em)eμ, eμ〉

)∫
�(1)\�

(2imy)−kykdμ(τ )

= (|L′/L| + e(− sig(L)/4)(−1)k|(L′/L)2|
) gm(L)

g(L)
(2mi)−k vol(�(1)\�).

The contribution of the elliptic and non-cuspidal hyperbolic elements: Using [23],
Lemme 1, p. 13 and Lemma 6.1 the contribution of the elliptic and non-cuspidal
elements to the trace is given by

∫
�(1)\�

∑
γ∈�/�A

fA(γ τ )

⎛⎝ ∑
μ∈L′/L

〈ρ−1
L (A)eμ, eμ〉

⎞⎠ Im(γ τ )kdμ(τ )

=
∑

μ∈L′/L

〈ρ−1
L (A)eμ, eμ〉

∫
�(1)\�

∑
γ∈�/�A

fA(γ τ ) Im(γ τ )kdμ(τ ). (6.9)

The integral appearing in this expression has already been treated by [23], proof of
Theorem 2, pp. 17–18 and thus its value is equal to (6.8) if the matrix A is elliptic,
and 0 for those hyperbolic matrices A for which tr(A)2 − 4 det(A) is not a square.
Furthermore, a set of representatives of the �-conjugacy classes of elliptic matrices in
M(n) is given by⋃

t∈�
D=t2−4n<0

{
A[a,b,c], A[−a,−b,−c]; a, b, c ∈ � with |b| ≤ a ≤ c and b2 − 4ac = D

}
.

Here [a, b, c] denotes the binary quadratic form ax2 + bxy + cy2. All details, in
particular the relation between conjugacy classes of elliptic matrices and equivalence
classes of positive and negative definite binary quadratic forms, can be found in [23],
pp. 24–28, and [39], p. 49. Note that A[−a,−b,−c] = det(A[a,b,c])A−1

[a,b,c]. Therefore, by (4.2)
we obtain

ρ−1
L (A[−a,−b,−c]) = g1(L)

gn(L)
ρL(A[a,b,c]) = ρL(A[a,b,c]). (6.10)

The last equation holds since gn(L) = gr2 (L) = g1(L), which can be verified using
definition (2.5) of the sum gn(L) and the fact that n is coprime to the level N. Equation
(6.10) yields

C−1
k tr(ρ−1

L (A[a,b,c]))I(A[a,b,c]) + C−1
k tr(ρ−1

L (A[−a,−b,−c]))I(A[−a,−b,−c])

= C−1
k tr(ρ−1

L (A[a,b,c]))I(A[a,b,c]) + C−1
k tr(ρ−1

L (A[a,b,c]))I(A[a,b,c])).
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The contribution of the hyperbolic elements stabilising cusps: An element A of M(n) has
cusps as fixed points if and only if tr(A) − 4n is a square in �. Moreover, a complete
set of representatives of �-conjugacy classes of hyperbolic elements of M(n) is given
by {

A[b,u],−A[b,u]; t ∈ � with t2 − u2 = 4n and 0 ≤ b < u
}

(see [23], p. 28). If A is a hyperbolic element of M(n) that stabilises cusps of SL2(�) we
follow the classical approach of the trace formula to avoid convergence problems,
replace the fundamental domain F of �(1) by F(c) = {τ ∈ F ; Im(τ ) < c} and
consider

I∗(A, c) :=
∫
F(c)

∑
γ∈�A\�

∑
μ∈L′/L

〈ρ−1
L (A)eμ, eμ〉fA(γ τ ) Im(γ τ )kdμ(τ )

= tr(ρ−1
L (A))

∫
⋃

γ∈�A\� γF(c)
fA(τ ) Im(τ )kdμ(τ ).

By [23], Lemme 1, p. 13, [23], p. 19, [23], (5), p. 12 or similar calculations to the
calculations of [40], p. 173, respectively, we get

lim
c→∞ I∗(A, c) = 2k−1Cknk/2 tr(ρ−1

L (A))(t + u)−k
(

t − u
t + u

− 1
)−1

= Ck

2
tr(ρ−1

L (A))
(

t − u
t + u

)k/2 ( t − u
t + u

− 1
)−1

if A =
( t−u

2 b
0 t+u

2

)
.

The contribution of the parabolic matrices: We assume that n = m2 since otherwise
M(n) does not contain any parabolic elements. Then a set of conjugacy classes can be
given by (

m − v v

−v m + v

)
=
(

1 0
1 1

)(
m v

0 m

)(
1 0

−1 1

)
, (6.11)

with v ∈ �/m�, m > 0 (cf. [23], pp. 29–30 with c = x = X = 1). Moreover, the
centraliser of Av = ( m v

0 m ) is

�Av
=
{
±
(

1 t
0 1

)
; t ∈ �

}
. (6.12)

We obtain that the contribution of the parabolic elements to the trace can be written
as

∑
v∈�/m�

∫
�(1)\�

∑
γ∈�Av \�

∑
γ ′∈�′

Av

fγ −1γ ′Avγ (τ )

⎛⎝ ∑
μ∈L′/L

〈ρ−1
L (γ −1γ ′Avγ )eμ, eμ〉

⎞⎠ Im(τ )kdμ(τ )

with �′
A = {γ ′ ∈ �A; Aγ ′ �= αE1, α �= 0

}
. Because of convergence problems, we

work again with a cut-off fundamental domain and in order to determine the
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contribution of the parabolic elements to the trace we then have to determine the
limit of

I(P, c) :=
∑

v∈�/m�

∫
F∞(c)

∑
γ ′∈�′

Av

fγ ′Av
(τ )

⎛⎝ ∑
μ∈L′/L

〈ρ−1
L (γ ′Av)eμ, eμ〉

⎞⎠ Im(τ )kdμ(τ ) (6.13)

as c → ∞. Here F∞(c) := {z ∈ �; 0 ≤ Re(τ ) ≤ 1, Im(τ ) ≤ c}. Oesterlé calculated the
limit of (6.13) with the contribution of the Weil representation removed (see [23],
p. 21). In the following, we adapt his proof to our situation. By [23], Lemme 2, p. 14
this integral converges (cf. [23], p. 21).

For the evaluation of (6.13), we need to consider the cases γ ′ = +Tr and γ ′ =
−Tr ∈ �′

Av
separately. In particular, these two cases have to be considered when we

compute the character of the Weil representation. With the help of the Lemmas 6.1
and 6.2∑

μ∈L′/L

〈ρ−1
L (+TrAv)eμ, eμ〉 = gm(L)

g(L)

∑
μ∈L′/L

e(−rμ2/2)e(−vm−1μ2/2).

Similarly,

∑
μ∈L′/L

〈ρ−1
L (−TrAveμ, eμ〉 = gm(L)

g(L)
e(− sig(L)/4)

∑
μ∈(L′/L)2

e(−rμ2/2)e(−vm−1μ2/2).

[23], Lemme 1, p. 13 and [11], Lemma 5.5.1 (a) yield for I(P, c) in the “+ case”

lim
c→∞ I(P, c,+) = gm(L)

g(L)

∑
v∈�/m�

∑
μ∈L′/L

e(−vm−1μ2/2)

× lim
c→∞

∫
F∞(c)

∑
r∈�′

e(−rμ2/2)fTrAv
(τ ) Im(τ )kdμ(τ )

= gm(L)
g(L)

∑
v∈�/m�

∑
μ∈L′/L

e(−vm−1μ2/2)

× lim
c→∞

∫
F∞(c)

∑
r∈�′

e(rB(−μ2/2))
(

2i Im(τ ) + v

m
+ r
)−k

Im(τ )kdμ(τ )

(6.14)

where �′ = {r ∈ �; r �= − v
m

}
. The last line of (6.14) can be evaluated in exactly the

same way as in [23], p. 21 and p. 43 and we obtain:

lim
c→∞ I(P, c,+) = 21−ki2−kπ

k − 1
gm(L)
g(L)

∑
v∈�/m�

∑
μ∈L′/L

e(−vm−1μ2/2)e
(

− v

m
B(−μ2/2)

)

×
{

(1 − 2B(−μ2/2)), if v
m ∈ �,

2
1−e(− v

m ) , if v
m /∈ �.

The same argumentation as above yields in the “– case” formula (6.6). �
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THEOREM 6.5. Under the same conditions as in Theorem 6.3 the dimension of the
space Sk,L of vector-valued cusp forms of weight k and type ρL is given by

dim�(Sk,L)

= −1
4

⎛⎝ ∑
μ∈L′/L

(1 − 2B(−μ2/2)) + e(− sig(L)/4)(−1)k
∑

μ∈(L′/L)2

(1 − 2B(−μ2/2))

⎞⎠
+ k − 1

24

(|L′/L| + e(− sig(L)/4)(−1)k|(L′/L)2|
)+ 2 Re

(
(−i)k

8
tr(ρ−1

L (S))
)

+ 2 Re

(
e
( 1−k

6

)
6i

√
3

tr
(
ρ−1

L (ST)
))+ 2 Re

(
e
( 1−k

3

)
6i

√
3

tr
(
ρ−1

L

(
T−1S

)))
.

(6.15)

Proof. It is evident from the definition of the Hecke operator on the space of
vector-valued cusp forms that tr(T(1)) = dim�(Sk,L). Thus it is easy to see that the
first three terms in (6.15) are the terms A1 and A2 of the trace formula in Theorem
6.3. In order to treat the contribution from the elliptic matrices, we note that the only
elliptic matrices in � are those with trace t = −1, 0, 1. The correspondence between
�-conjugacy classes of elliptic matrices in � with trace t and equivalence classes of
positive definite binary quadratic forms of discriminant D = t2 − 4 (see e.g. [23], p. 24–
25, or [39], p. 49, respectively) yields that the following representatives contribute to
the dimension formula:

t = 0 :
(

0 −1
1 0

)
, t = 1 :

(
0 −1
1 1

)
, t = −1 :

( −1 −1
1 0

)
.

Hence the last three expressions of (6.15) are a direct consequence of (6.7) and (6.8).
Furthermore, one can easily prove that the equation t2 − 4 = u2 has for u �= 0 no
solution (u, t) ∈ �2 using the formula for generating Pythagorean triples. Thus, the
theorem follows. �
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