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Abstract. We prove a converse theorem for the multiplicative Borcherds lift for lattices
of square-free level whose associated discriminant group is anisotropic. This can be seen as
generalization of Bruinier’s results in [Br2], which provides a converse theorem for lattices
of prime level. The surjectivity of the Borcherds lift in our case follows from the injectivity
of the Kudla-Millson theta lift. We generalize the corresponding results in [BF1] to the
aforementioned lattices and thereby in particular to lattices which are not unimodular and
not of type (p, 2). Along the way, we compute the contribution of both, the non-Archimedean
and Archimedean places of the L2-norm of the Kudla-Millson theta lift. As an application
we refine a theorem of Scheithauer on the non-existence of reflective automorphic products.

1. Introduction

In his celebrated paper [B], Borcherds constructed a multiplicative lifting (referred to as
Borcherds lift) from the space of vector valued weakly holomorphic modular forms of weight
1− p

2 for the Weil representation associated to a lattice L of type (p, 2) and rank m ∈ 2Z to
meromorphic modular forms for the orthogonal group of L. The orthogonal modular forms
arising this way are of special interest as they allow an infinite product expansion at each
cusp and have a divisor being a linear combination of so-called Heegner divisors. Therefore,
the following question, initially raised by Borcherds (see [B], Problem 16.10), is of great
importance: Let F be a meromorphic modular form for the orthogonal group of L whose
divisor is a linear combination of Heegner divisors. Is there a weakly holomorphic modular
form of weight 1− p

2 for the Weil representation attached to the lattice L whose Borcherds lift
is (up to a multiplicative constant) the form F? This question has been addressed in several
papers: It is pointed out in [Br2], that in the case of lattices with signature (1, 2) there are
orthogonal modular forms which cannot be obtained as a Borcherds lift of some vector valued
modular form. However, an affirmative answer for a large class of lattices is given in [Br1]
and [Br2]. The most general results in this direction can be found in [Br2]:

i) In Theorem 1.2 a converse theorem is given under the assumption that the lattice L
allows a decomposition over Z of the form

(1.1) L = M ⊕ U(N)⊕ U,

where M is a lattice of type (p− 2, 0), U is a hyperbolic plane and U(N) is a scaled
hyperbolic plane, i. e. the hyperbolic plane U equipped with the quadratic form
QN ((x1, x2)) = Nx1x2.

ii) The Theorem 1.4 also states a converse theorem. But it does not rely on the assump-
tion that the lattice splits a hyperbolic plane. It only requires that the level of the
lattice is a prime number.

In both of the above theorems it is presumed that p ≥ 3.
1
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In [BF], a converse theorem under the hypothesis that L is unimodular is proved. The
main portion of the proof shows that the Kudla-Millson theta lift, a map from the space of
cusp forms of weight m

2 transforming with the Weil representation into the space of closed
differential 2-forms on the modular variety X, is injective (see Theorem 4.9). This is achieved
by evaluating the L2-norm of the Kudla-Millson theta lift, showing that it is non-zero for
most choices of m and the Witt rank r0 of L. The important paper [BF1] establishes a
relation between the regularized theta lift (see (1.3)) and the Kudla-Millson theta lift (see
[BF1], Theorem 6.1). Based on this relation and a weak converse theorem in [Br1], Theorem
4.23, the surjectivity of the Borcherds lift is derived.

The purpose of this paper is threefold.

i) We give a further converse theorem for the Borcherds lift. This theorem may be seen
as a generalization of Bruinier’s Theorem 1.4 in [Br2]. Our converse theorem does not
rely on the decomposition (1.1). However, it assumes that the level of the underlying
lattice L is square-free and the associated discriminant group L′/L is anisotropic. This
condition means that each p-group of L′/L is of the form (2.1). Although we have a
restriction on the structure of the p-groups of L′/L, our results may be interpreted as
generalisation of Theorem 1.4 in [Br2] to lattices with square-free level (to the best of
my knowledge such a result has not yet been established).

ii) As a byproduct, but probably interesting in its own right, we show the injectivity of
the Kudla-Millson theta lift associated to a lattice which is not unimodular and not
of type (p, 2). This generalizes the results in [Br1] and [Zu].

iii) As an application we refine a result of Scheithauer (Theorem 12.3 in [Sch]), which
states that there are only finitely many reflective and symmetric automorphic products
of singular weight.

As far as I am aware, most of the recent papers on the classification of reflective
modular forms are based on Bruinier’s converse theorems in [Br2] and thereby rely
either on the assumption that the involved lattice splits U⊕U(N) over Z or has prime
number level. It is conceivable that these assumptions can be weakened by employing
the converse theorem of the present paper. I hope to come to back to these topics in
the future.

Let us explain the content of the paper in some more detail. Let (L, (·, ·)) be a non-
degenerate even lattice of type (p, 2) equipped with a bilinear form (·, ·) and the associated
quadratic form x 7→ Q(x) = 1

2(x, x). We denote the rank of L with m and assume in the
whole paper that m is even. Moreover, let V (Q) be the rational quadratic space L ⊗ Q, L′

the dual lattice of L and A = L′/L be the associated discriminant group. Since L is even, the
quadratic form Q induces a Q/Z-valued quadratic form on A, which thereby becomes also a
quadratic module. The (finite) Weil representation ρA is a unitary representation of SL2(Z)
on the group ring C[A],

ρA : SL2(Z) −→ GL(C[A]).

We denote the standard basis of C[A] by (eµ)µ∈A. A weakly holomorphic modular form of
weight κ ∈ Z for SL2(Z) of type ρA is a holomorphic function f on the upper half plane
H which satisfies f(γτ) = (cτ + d)κρA(γ)f(τ) for all γ =

(
a b
c d

)
∈ SL2(Z). Additionally, f

is meromorphic at the cusp ∞ (see Section 3 for further details). We denote the space of
these forms by M !

κ,A. A modular form of this type is called holomorphic if it is holomorphic
instead of meromorphic at ∞. We write Mκ,A for the space of all such modular forms and
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use the symbol Sκ,A for the subspace of cusp forms. Finally, let V (R) = L ⊗ R and D the
Grassmannian of 2-dimensional negative definite subspaces in V (R).

A vital step in the proof of the surjectivity of the Borcherds lift is the proof of the injectivity
of the Kudla-Millson theta lift Λ. It maps a cusp form f ∈ Sκ,A of weight κ = m

2 to a closed
differential 2-form on D. More precisely, we have

Λ : Sκ,A −→ Z2(D), f 7→ Λ(f)

with

Λ(f)(z) =

∫
SL2(Z)\H

〈f(τ),ΘA(τ, z, ϕKM)〉dudv
v2

with τ = u+ iv ∈ H. Here 〈·, ·〉 is the standard scalar product on the group ring,

(1.2) ϕKM ∈
[
S(V )⊗A2(D)

]O(V (R))
,

is a Schwartz form constructed by Kudla and Millson in [KM1] and ΘA is a theta series
associated to ϕKM, where A2(D) means the space of smooth differential 2-forms on D and
Z2(D) the subspace of closed 2-forms. See Section 4 for the definition of the Kudla-Millson
form and Section 7 for the definition of ΘA. In [BF] the injectivity of Λ is proved in a more
general setting:

i) Instead of ϕKM a more generalized Schwartz form ϕq,l due to [FM] is considered.
ii) An adelic set-up for the involved Eisenstein series and theta series is utilized.
iii) Instead of working with the Grassmannian D the authors work with a Shimura variety

XK of orthogonal type, whose complex points are given by

XK(C) = H(Q)\(D ×H(Af ))/K,

where H = GSpin(V ), Af the finite adeles of Q and K ⊂ H(Af ) is a compact open
subgroup which leaves L stable and acts trivially on A.

However, the proof is given under the assumption that L is unimodular. Very recently, Zuffetti
proved in [Zu] the injectivity of Λ for non-unimodular lattices but of signature (p, 2). In the
present paper, we prove the injectivity of Λ in the same general setting, but we drop the
aforementioned restrictions on L and assume only that the associated discriminant group
A is anisotropic. To this end, we produce for all relevant results in Section 4 of [BF] a
corresponding result in the vector valued setting. This includes a vector valued version of
the Siegel-Weil formula, which can be easily deduced from the classical Siegel-Weil formula
in [KR1] and [KR2]. Apart from Proposition 4.7 and Theorem 4.9, the transfer to the vector
valued approach is mostly straightforward. The main difference is that we have to work
with a special family of Schwartz-Bruhat functions ϕµ ∈ S(V (Af )), µ ∈ A, on the finite
adeles Af (see (5.13)). It takes a lot more effort to obtain the analogue of Proposition 4.7
and Theorem 4.9 in [BF]. The former result requires a vector valued version of the classical
doubling formula (see [Bo]), which has been given in a separate paper by the author (see
[St2]). Theorem 4.9 relies on the existence of the standard L-function associated to a Hecke
eigenform f of all Hecke operators T (n2). Such an L-function has been defined in another
paper by the author and the usual fundamental properties have been proved therein (see
[St3]). Thus, the following theorem and consequently this paper can be seen as a result of
several papers of the author ([St1]-[St3]).



4 OLIVER STEIN

Theorem 1.1. [Cor. 7.8] Let m > max(6, 2l − 2, 3 + r0) and s0 = (m − 3)/2. Further,
let p > 1 and q + l even and assume that A is anisotropic. Then the theta lift Λ : Sκ,A →
Zq(XK , S̃ym

l
(V )) is injective.

Based on Theorem 1.1, subsequently the surjectivity of the Borcherds lift is established.
The main result regarding the Borcherds lift is Theorem 13.3 of [B]. It states that, given a
weakly holomorphic modular form g of weight κ = 1− p

2 and type ρA with Fourier coefficients
c(µ, n) with µ ∈ A and n ∈ Z+Q(µ) (and c(µ, n) ∈ Z for n < 0), there exists a meromorphic
modular form ΨL for some subgroup of the orthogonal group of L with

i) weight
c(0, 0)

2
and

ii) a divisor given by ∑
µ∈A

∑
n∈Z+Q(µ)

n<0

c(µ, n)Z(n, µ),

where Z(µ, n) is given by (8.14).

The modular form ΨL is defined by means of the regularized theta lift

(1.3) ΦL(g)(τ, z) =

∫ reg

SL2(Z)\H
〈g(τ),ΘA(τ, z, ϕp,2∞ )〉dudv

v2
,

where ΘA is the theta series associated to the Gaussian ϕp,2∞ of signature (p, 2) and
∫ reg

SL2(Z)\H is

a regularization of the integral
∫

SL2(Z)\H according to [B]. The proof of our converse theorem

makes use of the same approach as the one taken for Cor. 1.7 in [BF]. It is based on Thm.
6.1 in [BF1] and Thm. 4.23 in [Br1]. We stick with adelic setup we employed to establish the
injectivity of the Kudla-Millson theta lift and generalize both of the aforementioned theorems
to this setting. Based on these results we obtain

Corollary 1.2 (Cor. 8.8). Let m be the even rank of the lattice L satisfying m > max(6, 3+r0)
and m ≡ 0 mod 4. Moreover, let the associated discriminant form A be anisotropic and
F : D+ → C be a meromorphic modular form of weight r and character χ (of finite order) for
the discriminant kernel Γ(L) whose divisor is a linear combination of Heegner divisors. Then
there exists a weakly holomorphic modular form f ∈ M !

`,L− such that F is up to a constant

multiple the Borcherds lift ΨL of f .

2. Preliminaries and notations

In this section we fix some notation, which will be used this way throughout the paper
unless it is stated otherwise, and recall some basic facts, which will be vital for the rest of the
paper. For details the reader may consult [BF] and [BF1].

We start with a non-degenerate lattice (L, (·, ·)) of type (p, q) and even rank m = p + q.
The signature of L is defined by sig(L) = p− q. Associated to the bilinear form (·, ·) we have
the quadratic form Q(·) = 1

2(·, ·). We assume that L is even, i. e. Q(x) ∈ Z for all x ∈ L. Let

L′ := {x ∈ V = L⊗Q : (x, y) ∈ Z for all y ∈ L}
be the dual lattice of the lattice even L. Since L ⊂ L′, the elementary divisor theorem implies
that L′/L is a finite group. We denote this group by A. The modulo 1 reduction of both,
the bilinear form (·, ·) and the associated quadratic form, defines a Q/Z-valued bilinear form
(·, ·) with corresponding Q/2Z-valued quadratic form on A. We call A combined with (·, ·)
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a discriminant group or a quadratic module. By sig(A) = sig(L) = p − q we denote the
signature of A. We call A anisotropic if q(µ) = 0 holds only for µ = 0. It is well known that
any discriminant group can be decomposed into a direct sum of quadratic modules of the
following form (cf. [BEF])

Atpk =

(
Z/pkZ,

tx2

pk

)
, p > 2, At2k =

(
(Z/2kZ,

tx2

2k+1

)
,

B2k =

(
Z/2kZ⊕ Z/2kZ;

x2 + 2xy + y2

2k

)
, C2k =

(
Z/2kZ⊕ Z/2kZ;

xy

2k

)
.

(2.1)

The structure of anisotropic finite quadratic modules is well known: In particular, for an odd
prime p each p-group Ap of a discriminant form A can be either written as

(2.2) Atp or as a direct sum Atp ⊕A1
p.

For further details we refer to [BEF].
We put V = V (Q) = L ⊗ Q and choose an orthogonal basis {vi} of V (R) = L ⊗ R such

that (vα, vα) = 1, α = 1, . . . , p and (vµ, vµ) = −1 for µ = p + 1, . . . ,m. For x ∈ V we may
write

x =

p∑
α=1

xαvα +

m∑
µ=p+1

xµvµ

in terms of its coordinates with respect to the basis {vi} such that

(2.3) (x, x) =

p∑
α=1

x2
α −

m∑
µ=p+1

x2
µ.

By r0 ∈ Z we mean the Witt index of V , i. e. the dimension of a maximal isotropic subspace
of V . Now pick the fixed subspace

(2.4) z0 = span{vµ | µ = p+ 1, . . . ,m}

and let

(2.5) D = {z ⊂ V | dim(z) = q, (·, ·)|z < 0}

the Grassmannian of oriented q- planes in V (R). It is well known that D is a real analytic
manifold. We denote by

Aq(D) and Zq(D)

the smooth differential q- forms and the smooth closed differential q- forms, respectively, on
D. Note that D has two connected components

D = D+ tD−

given by the two possible choices of an orientation. Clearly, the orthogonal group G(R) =
O(V (R)) acts on D. We denote by K∞ the subgroup of G(R) which stabilizes z0. As G(R)
acts transitively on D, we have G(R)/K∞ ∼= D. Note that K∞ ∼= O(p)×O(q). Let S(V (R))
be the space of Schwartz functions on V (R) and G′(1)(R) = SL2(R). The Weil representation
ω∞ in the Schrödinger model is a representation of G′(1)(R) × G(R) on S(V (R)) (see e. g.
[We1], [Ku3] or [St1]). The group G(R) acts on S(V (R)) in a natural way by

(2.6) ω(g)ϕ(x) = ϕ(g−1x).



6 OLIVER STEIN

It suffices to describe the action of G′(1)(R) on its generators:

ω∞(m(a))ϕ(x) = am/2ϕ(ax) for a > 0 and m(a) =
(
a 0
0 a−1

)
,

ω∞(n(b))ϕ(x) = eπib(x,x)ϕ(x) with n(b) =
(

1 b
0 1

)
and

ω∞(S)ϕ(x) = e(− sig(L)/8)ϕ̂(−x) with S =
(

0 −1
1 0

)
,

(2.7)

where ϕ̂(y) =
∫
V (R) ϕ(t)e2πi(x,y)dt is the Fourier transform of ϕ. Note that ω∞ can be defined

in a much more general adelic setting as a representation of G′(n)(A) × G(A) on the space
of Schwartz-Bruhat functions S(V (A)n), where A is the ring of adeles of Q and G′(n)(A) =
Sp(n,A) (see the literature cited above). We denote this more general Weil representation
with ω and use the notation K ′(n) = K ′(n)∞

∏
pK
′(n)p with K ′(n)p = G′(n)(Zp) for the

maximal compact subgroup in G′(n)(A). Here,

(2.8) K ′(n)∞ =

{
k =

(
a b
−b a

)
∈ Sp(n,R)

∣∣∣∣ k = a+ ib ∈ U(n)

}
,

where U(n) means the unitary group.
Theta series will play vital role in this paper. Associated to ϕ ∈ S(V (R)) and µ ∈ A we

define

(2.9) ϑ(g′, ϕ, µ) =
∑

λ∈µ+L

ω∞(g′)ϕ(λ).

As ω∞(g′)ϕ is rapidly decreasing, ϑ(g′, ϕ, µ) is well defined. The standard majorant (·, ·)z
associated to z ∈ D is defined by

(2.10) (x, x)z = (xz⊥ , xz⊥)− (xz, xz),

where x = xz⊥ + xz is the decomposition of x with respect to V = z⊥ + z. Now let the
standard Gaussian on V (R)×D be

(2.11) ϕp,q∞ (x, z) = exp (−π(x, x)z) ,

(p, q) emphasizing the type of Q. Since (x, x)z is positive for all x ∈ V , the Gaussian is rapidly
decreasing and thus an element of S(V (R)). More generally, for x = (x1, . . . , xn) ∈ V (R)n

(2.12) ϕp,q∞ (x, z) = exp

(
−π

n∑
i=1

(xi, xi)z

)
is the standard Gaussian on V (R)n ×D.

We choose for g′ ∈ G′(1)(R) the matrix gτ = n(u)m(
√
v). It moves the base point i to the

element τ = u + iv in the upper half plane H. With this choice of g′ and ϕ we can define a
Siegel theta function by means of ϑ:

θ(τ, z, µ) = ϑ(gτ , µ, ϕ
p,q
∞ (·, z))

=
∑

λ∈L+µ

ϕp,q∞ (λ, τ, z).(2.13)

with

ϕp,q∞ (λ, τ, z) = vq/2 exp (πi((λ, λ)u+ (λ, λ)ziv))

= vq/2e (Q(λz⊥)τ +Q(λz)τ)
(2.14)
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The last equation of (2.13) can be obtained immediately by employing the explicit formulas
of the Weil representation (cf.(2.7)). It can be shown (see e. g. [B], Theorem 4.1) that the
vector valued theta series

(2.15) ΘA(τ, z, ϕp,p∞ ) =
∑
µ∈A

θ(τ, z, µ)

is a real-analytic function with respect to both variables τ and z. Additionally, it transforms
with respect to the modular group

Γ = SL2(Z)

like a vector valued modular form of weight (p − q)/2 for the finite Weil representation (see
Section 3 for the definition of vector valued modular forms) and is invariant under the action of
SO(V )(R). Later in the paper, we will utilize the notation 1M for the characteristic function
of a set M and we denote by ι the embedding

(2.16) ι : G′(1)×G′(1)→ G′(2), ι

((
a b
c d

)
,

(
a′ b′

c′ d′

))
=


a 0 b 0
0 a′ 0 b′

c 0 d 0
0 c′ 0 d′

 .

In some sections of the present work the variable p has two meanings. On the hand, it is part
of the type (p, q) of the lattice L. On the other hand, p stands for a prime p parametrizing
a local Archimedean place. However, there is no danger of confusion since it is always clear
from the context what the meaning of p is.

3. The finite Weil representation and weak Maass forms

In this section we recapitulate the background material to define harmonic weak Maass
forms as introduced e. g. [BF1]. We assume the conventions and notation from Section
2. In [Br1] Bruinier explained how to extended the Borcherds lift to this type of modular
forms. They can be seen as a natural generalization of weak holomorphic modular forms
transforming according to the finite Weil representation. Later on, weak Maass forms will
play a crucial role in the proof of the subjectivity of the Borcherds lift.

Recall from Section 2 that the discriminant group A = L′/L equipped with the modulo
1 reduction of Q defines a quadratic module. Associated to A there is a representation ρA
of Γ on the group ring C[A], which we call the “finite” Weil representation. We denote the
standard basis of C[A] by {eµ}µ∈A. The standard scalar product on C[A] is given by

(3.1)

〈∑
µ∈A

aµeµ,
∑
µ∈A

bµeµ

〉
=
∑
µ∈A

aµbµ.

Note that the group rings C[A2] and C[A] are related by the following isomorphism

(3.2) C[A2] −→ C[A]⊗ C[A], e(µ,ν) 7→ eµ ⊗ eν .

This will be used later in Section 7.
As Γ is generated by the matrices

(3.3) S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

it is sufficient to define ρA by the action on these generators.
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Definition 3.1. The representation ρA of Γ on C[A], defined by

ρA(T )eµ := e(bQ(µ))eµ,

ρA(S)eµ :=
e(− sig(A)/8)

|A|1/2
∑
ν∈A

e(−(ν, µ))eν ,
(3.4)

is called Weil representation. Note that ρA can be identified with a subrepresentation of the
Weil representation ω. We denote the dual representation of ρA by ρ∗A. It is obtained from
ρA by passing from (L, (·, ·)) to (L,−(·, ·)) or simply by complex conjugation when considered
as matrices. Thus ρ∗A = ρA− = ρA, where A− means the discriminant group A equipped with
−(·, ·).

Let Z =
(−1 0

0 −1

)
. The action of Z is given by

(3.5) ρA(Z)(eµ) = e(− sig(A)/4)e−µ.

We denote by N the level of the lattice L. It is the smallest positive integer such that
NQ(λ) ∈ Z for all λ ∈ L′. For the rest of this paper we suppose that N is odd. For later use
we introduce a Gauss sum associated to the discriminant group A. For an integer d we write

(3.6) gd(A) =
∑
µ∈A

e(dQ(µ))

and put g(A) = g1(A). By Milgram’s formula we have g(A) =
√
|A|e(sig(A)/8).

We now define vector valued modular forms of type ρA. With respect to the standard basis
of C[A] a function f : H→ C[A] can be written in the form

f(τ) =
∑
µ∈A

fµ(τ)eµ.

The following operator generalises the usual Petersson slash operator to the space of all those
functions. For κ ∈ Z we put

(3.7) f |κ,A γ = j(γ, τ)−κρA(γ)−1f(γτ),

where
j(g, τ) = det(g)−1/2(cτ + d)

is the usual automorphy factor if g =
(
a b
c d

)
∈ GL+

2 (R).
A holomorphic function f : H → C[A] is called a weakly holomorphic modular form of

weight κ and type ρA for Γ if f |κ,A γ = f for all γ ∈ Γ, and if f is meromorphic at the cusp
∞. Here the last condition means that f admits a Fourier expansion of the form

(3.8)
∑
µ∈A

∑
n∈Z+Q(µ)

c(µ, n)e(nτ),

where all but finitely many Fourier coefficients c(µ, n) with n < 0 vanish. If in addition
c(µ, n) = 0 for all n < 0 (n ≤ 0), we call the corresponding modular form holomorphic (a
cusp form). We denote by M !

κ,A, the space of all weakly holomorphic modular forms, by
Mκ,A the space of holomorphic modular forms and by Sκ,A the subspace cusp forms. We

write M !
κ,A− ,Mκ,A− and Sκ,A− for the corresponding spaces with respect to the dual Weil

representation ρA− . For more details see e.g. [Br1]. Note that formula (3.5) implies that
Mk,A = {0} unless

(3.9) 2κ ≡ sig(L) (mod 2).
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Therefore, if the signature of L is even, only non-trivial spaces of integral weight can occur.
The Petersson scalar product on Sκ,A is given by

(3.10) (f, g) =

∫
Γ\H
〈f(τ), g(τ)〉 Im τκdµ(τ)

where

dµ(τ) =
du dv

v2

denotes the hyperbolic volume element with τ = u+iv. In view of (3.2) we have for f ∈ Sκ1,A
and g ∈ Sκ2,A that

(3.11) f ⊗ g =
∑
µ,ν∈A

fµgνeµ ⊗ eν ∈ Sκ1+κ2,A2 .

Following [BF1], a harmonic weak Maass forms of weight κ with representation ρA is a
twice continuously differentiable function f : H −→ C such that

i) f |κ,A γ = f for all γ ∈ Γ,
ii) ∆κf = 0, where

(3.12) ∆κ = −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ iky

(
∂

∂u
+ i

∂

∂v

)
is the hyperbolic Laplace operator of weight κ.

iii) f(τ) = O(eεv) for v →∞ for some ε > 0 (uniformly in u).

By Hκ,A we mean the space of weak Maass forms. According to [BF1] each such Maass
form possesses a unique decomposition f = f+ + f− into a homomorphic part f+ and a
non-holomorphic part f− having Fourier expansions of the form

f+(τ) =
∑
µ∈A

∑
n∈Z+Q(µ)
n�−∞

c+(µ, n)e(nτ) and

f−(τ) =
∑
µ∈A

c−(µ, 0) +
∑

n∈Z+Q(µ)\{0}
n�∞

c−(µ, n)Hκ(2πnv)e(nu)

 .

Here Hκ(w) is given by e−w
∫∞
−2w e

−tt−κdt. For w < 0 we have Hκ(w) = e−wΓ(1 − κ, 2w),

where Γ(a, x) means the incomplete Gamma function. If w > 0, the integral converges only
for κ < 1. But it can be analytically continued to all κ ∈ C the same way as the Gamma
function.

For τ = u + iv ∈ H we define the Maass lowering and raising operators of weight κ on
non-holomorphic modular forms by

(3.13) Lκ = −2iv2 ∂

∂τ
, Rκ = 2i

∂

∂τ
+ κv−1.

It is shown in [BF1], Prop. 3.2, that the differential operator ξκ(f)(τ) = vκ−2Lκ(f)(τ)
maps weak Maass forms of weight κ to weakly holomorphic modular forms of weight 2 − κ
transforming with ρA− . Denote with H+

κ,A the subspace of weak Maass forms which are
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mapped by ξκ to the space of cusp forms S2−κ,A− . It is proved in [BF1], Theorem 3.7, that
ξκ is surjective, which implies that the sequence

(3.14) 0 −→M !
κ,A −→ H+

κ,A

ξκ−→ S2−κ,A− −→ 0.

is exact. By means of [BF1], Lemma 3.1, we see that the Fourier expansion of f ∈ H+
κ,A is

given by

(3.15) f(τ) =
∑
µ∈A

 ∑
n∈Z+Q(µ)
n�−∞

c+(µ, n)e(nτ) +
∑

n∈Z+Q(µ)\{0}
n<0

c−(µ, n)Γ(1− κ, 4π|n|v)e(nτ)

 .

The principal part of such a Maass form f is then given by

(3.16) Pf (τ) =
∑
µ∈A

∑
n∈Z+Q(µ)

n<0

c+(µ, n)e(nτ).

4. Special Schwartz forms

In this paper the Kudla-Millson form ϕKM ([KM1]) and the more general Schwartz form
ϕq,l ([FM]) play a prominent role as they constitute the theta kernel of the Kudla-Millson lift
Λ. The proof of the injectivity of Λ makes use of the related Schwarz functions φq,l and ξ and
some of their properties.

Schwartz forms are a generalization of Schwartz functions. In this section we review the
construction of the Schwartz forms ϕKM, ϕq,l and the aforementioned Schwartz functions φq,l
and ξ. We additionally list some of their fundamental properties. Our main sources are
[KM1], [FM] and [BF].

Schwartz forms are Schwartz functions on V with values in the differential q-forms on the
Grassmannian D. They can be considered as elements of S(V ) ⊗ Aq(D). Note that G(R)
acts on elements of S(V )⊗Aq(D) via

(4.1) L∗gϕ(gx, z),

where L∗g means the pullback on Aq(D) induced by left translations of G(R) on D.
The construction of the Kudla-Millson Schwartz form ϕKM makes use of the isomorphism

(4.2) [S(V )⊗Ar(D)]G(R) ∼=

[
S(V )⊗

r∧
p∗

]K∞
,

which is given by mapping any ϕ(x, z) ∈ [S(V )⊗Ar(D)]G(R) to ϕ(x, z0) ∈ [S(V )⊗
∧r p∗]K∞ ,

where z0 ∈ D denotes a fixed base point and p is part of the Cartan decomposition g = p + t
of the Lie algebra g of G(R) with t being the Lie algebra of K∞. The isomorphism (4.2) is
based on the well known fact (see e. g. [He], Chap. IV, Sec. 3 ) that g/t ∼= p is isomorphic
to the tangent space T (D)z0 at the chosen base point z0. As usual, p∗ means the dual space
of p and

∧r the r-fold exterior product of p∗. In view of 4.2, it suffices to specify ϕKM on p∗.
To this end, we utilize the explicit description of p by{(

0 X
Xt 0

) ∣∣∣∣ X ∈Mp,q(R)

}
∼= Mp,q(R).
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By means of this isomorphism, the standard basis of Mp,q(R) gives rise to a basis Xα,µ of p
with respect to the above chosen basis of V . For 1 ≤ α ≤ p and p+ 1 ≤ µ ≤ p+ q we have

Xα,µ(vi) =


vµ, i = α,

vα, i = µ,

0, otherwise.

Moreover, by {ωα,µ | α = 1, . . . , p and µ = p+ 1, . . . , p+ q} ⊂ p∗ we mean the associated dual
basis.

Let ϕp,q∞ be the standard Gaussian (see Section 2). For the rest of this section we drop the
superscript p, q to lighten the notation. It can be verified that

ϕ∞(gx, gz) = ϕ∞(x, z)

for all g ∈ G(R), i. e.

ϕ∞ ∈ [S(V )⊗ C∞(D)]G(R) .

For the sake of clarity we write

(4.3) ϕ0(x) instead of ϕ∞(x, z0).

Then ϕKM is defined by (see [KM1], Chap. 3 and Chap. 5 and [FM], Chap. 5.2) by applying
the Howe operator

D : S(V )⊗
∧•

(p∗) −→ S(V )⊗
∧•+q

(p∗),

D =
1

2q/2

m∏
µ=p+1

[
p∑

α=1

(
xα −

1

2π

∂

∂xα

)
⊗A(ωαµ)

]
(4.4)

to ϕ0 ⊗ 1 ∈
[
S(V )⊗

∧0(p∗)
]K

:

(4.5) ϕKM = D(ϕ0 ⊗ 1).

Here A(ωαµ) denotes the exterior left multiplication by ωαµ.
The definition of the more general Schwartz form ϕq,l can be found in [FM], Chap. 5.2.

(for n = 1 in our case). As a differential form on D, ϕq,l takes values in S(V ) ⊗ Syml(V ),

where Syml(V ) is the l-th symmetric power of V . As pointed out in [BMM], Lemma 8.2 and
Theorem 8.3, the isomorphism in (4.2) extends to these more general forms. We have

(4.6)
[
S(V )⊗Aq(D)⊗ Syml(V )

]G(R) ∼=

[
S(V )⊗

q∧
p∗ ⊗ Syml(V )

]K∞
.

Consider the operator

(4.7) D′ =

[
1

2

p∑
α=1

(
xα −

1

2π

∂

∂xα

)
⊗ 1⊗A(vα)

]l
∈ EndC

(
S(V )⊗

∧•
(p∗)⊗ Syml(V )

)
,

where A(vα) means the multiplication in Syml(V ) by vα. Then ϕq,l is obtained from ϕKM ∈
[S(V )⊗

∧q p∗]K∞ by

(4.8) ϕq,l = D′(ϕKM ).
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If l is equal to zero, ϕq,l simplifies to ϕKM. Setting Dα =
(
xα − 1

2π
∂
∂xα

)
, we may write ϕq,l

in a more explicit form

(4.9) ϕq,l(x) =

p∑
α1,...,αq=1
β1,...,βl=1

q∏
i=1

l∏
j=1

DαiDβjϕ0(x)⊗
(
ωα1p+1 ∧ · · · ∧ ωαqp+q

)
⊗ (vβ1 ⊗ · · · ⊗ vβl) .

The following theorem summarizes the most fundamental properties of ϕq,l (and thereby
of ϕKM). They are proved in [FM], Section 6 and [KM1], Thm. 3.1, see also [BF] Section 3.

Theorem 4.1. The Schwartz form ϕq,l satisfies:

i) ϕq,l is invariant under the action of K∞, i. e. ϕq,l ∈
[
S(V )⊗

∧q(p∗)⊗ Syml(V )
]K∞

.
ii) ϕq,l is an eigenvector of weight m

2 + l under the action of K ′∞(1), i. e.

ω(k)ϕq,l = det(k)
m
2

+lϕq,l,

k ∈ U(1) corresponding to k ∈ K ′∞(1) (cf. (2.8)).
iii) ϕq,l is a closed differential q- form on D with values in Syml(V ).

The Schwartz function φq,l ∈ S(V (R)2) is constructed by applying the Hodge star operator
∗ on D to ϕq,l. More precisely,

(4.10) φq,l((x1, x2), z)µ = ϕq,l(x1, z) ∧ ∗(ϕq,l)(x2, z),

where µ is the G(R)-invariant volume form on D induced by the Riemann metric coming
from the Killing form on g.

The definition of the Schwartz function ξ is more involved: Let g′ be the complexified Lie
algebra of G′(2)(R). The Harish-Chandra decomposition of g′ is then given by

g′ = p+ ⊕ p− ⊕ t′

with t′ being the complexified Lie algebra of K ′(2)∞. We have an explicit description of p+:

p+ =

{
p+(X) =

1

2

(
X iX
iX −X

) ∣∣∣∣ X ∈M2,2(C) Xt = X

}
.

It is generated by

R11 = p+ ( 1 0
0 0 ) , R22 = p+ ( 0 0

0 1 ) , R12 =
1

2
p+ ( 0 1

1 0 ) .

It is well known (see e. g. [Bu], Chap. 2.1 and Chap. 2.2) that R1 = ι(R, 0) and R2 = ι(0, R),
where

R =
1

2

(
1 i
i −1

)
corresponds to the Maass raising operator. Now we are in the position to specify the Schwartz
function ξ ∈ S(V (R)2). We set

(4.11) ξ =
pl(−1)q+l

2lπq+l
ω(αq+l)ϕ0

with

αq+l =


(
R2

12 −R2
11R

2
22

) q+l
2 , if q + l is even,

R12

(
R2

12 −R2
11R

2
22

)[ q+l
2

]
, if q + l is odd
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being an element of p+.
Note that the functions φq,l and ξ are related by the identity

(4.12) φq,l = ξ + ω(R11)ω(R22)ψ,

where ψ is specified in [BF], Prop. 3.9.
We close this section with

Lemma 4.2 ([BF], Section 3). We have

i) ξ is K∞-invariant, i. e. an element in
[
S(V (R)2)⊗

∧0(p∗)
]K∞

,

ii) ξ is a weight m
2 + l eigenvector with respect to the action of K ′∞(2) via the Weil

representation.
iii) ξ vanishes identically if and only if p = 1 and q + l > 1.

5. The Siegel-Weil formula

This section summarizes the necessary background to state the Siegel-Weil formula in a
vector valued setup. We mainly follow [Ku2] and [Ku3]. This formula connects the integral
over a theta function associated to a Schwartz-Bruhat function and a special value of an adelic
Eisenstein series. It is stated in a global and more general setting compared to Section 4.

Recall that S(V (A)n) is the space of Schwartz-Bruhat functions, G(A) = O(V (A)) and
G′(n)(A) = Sp(n,A). Within G′(n)(A) we have the following subgroups

M(A) =

{
m(a) =

(
a 0
0 (a−1)t

) ∣∣ a ∈ GLn(A)

}
,(5.1)

N(A) =

{
n(b) =

(
1 b
0 1

) ∣∣ b ∈ Symn(A)

}
.(5.2)

These define the Siegel parabolic subgroup P (A) = N(A)M(A) of G′(n)(A), which is part of
the Iwasawa decomposition

(5.3) G′(n)(A) = N(A)M(A)K ′(n)

of G′(n)(A), where K ′(n) =
∏
vK
′
v(n) is the maximal compact subgroup of G′(n)(A). Here

for a non-Archimedean place v = p the group K ′p(n) is given by Sp(n,Zp) and K ′(n)∞ is the
maximal compact in G′(n)(R) (cf. (2.8)).

For ϕ ∈ S(V (A)n) we have a generalization of the theta function (2.9) to the genus n in
the adelic setting:

(5.4) ϑ(g, h, ϕ) =
∑

x∈V (Q)n

ω(g)ϕ(h−1x),

where g ∈ G′(n)(A) and h ∈ G(A). Here G′(n)(A) acts on S(V (A)n) via the global Weil
representation ω (see e. g. [We1], [Ku3] or [St1]).This action commutes with the action

ϕ(x) 7→ ϕ(h−1x)

of G(A). Sometimes the action of G(A) is written as ω(h)ϕ. It can be shown that ϑ(g, h, ϕ)
is left invariant under G′(n)(Q)×G(Q), slowly increasing on (G′(n)(Q)×G(Q))\(G′(n)(A)×
G(A)). Moreover, it defines a smooth function on G′(n)(A)×G(A). The integral

(5.5) I(g, ϕ) =

∫
G(Q)\G(A)

ϑ(g, h, ϕ)dh



14 OLIVER STEIN

can be interpreted as the average value of ϑ with respect to G(A). Here dh is the Haar
measure onG(Q)\G(A) normalized such that vol(G(Q)\G(A)) = 1, thus half of the Tamagawa
measure. By Weil’s convergence criterion (see [We2], Chap. VI, Prop. 8), the integral in (5.5)
is absolutely convergent for all ϕ whenever either V is anisotropic or the rank of L and the
Witt index of V satisfy the inequality m− r0 > n+ 1. Also, if ϕ is K ′(n)-finite, g 7→ I(g, ϕ)
defines an automorphic form on G′(n)(A) ([Ku3]).

To describe the Eisenstein series involved in the Siegel-Weil formula, we let

(5.6) χV : A×/Q× −→ C; x 7→ χV (x) = (x, (−1)m/2 det(V ))A

the quadratic character defined by the global Hilbert symbol (·, ·)A, where det(V ) is the Gram
determinant of V .

For s ∈ C, we denote by In(s, χV ) the normalized induced representation from P (A) to
G′(n)(A). It consists of smooth function g 7→ Φ(g, s) on G′(n)(A) satisfying

(5.7) Φ(n(b)m(a)g, s) = χV (det(a))| det(a)|s+ρnΦ(g, s)

for all a ∈ GLn(A) and b ∈ Symn(A), where

(5.8) ρn =
n+ 1

2
.

An element Φ ∈ In(s, χV ) is called a standard section if its restriction to K ′(n) is independent
of s. For any Φ ∈ In(s, χV ) and g ∈ G′(n)(A), we define the (adelic) Siegel Eisenstein series
of genus n by

(5.9) E(g, s,Φ) =
∑

γ∈P (Q)\G′(n)(Q)

Φ(γg, s).

If Φ is a standard section, one can proof that E(g, s,Φ) converges absolutely for Re(s) > ρn
and thereby defines and automorphic form on G′(n)(A) provided Φ is K ′(n)-finite. Moreover,
E(g, s,Φ) can be continued meromorphically to the whole s-plane (for these results see e. g.
[A])) and satisfies a functional equation.

One way to construct a standard section Φ is by means of the intertwining map

(5.10) λ : S(V (A)n) −→ In(s0, χV ), ϕ 7→ λ(ϕ)(g, s0) = Φ(g, s0) = (ω(g)ϕ)(0),

where

(5.11) s0 =
m

2
− ρn

and ω is the (adelic) Weil representation. Using the Iwasawa decomposition, write g ∈ G(A)
as g = n(b)m(a)k and put

|a(g)| = |det(a)|A.
It can then be proved that λ(ϕ) ∈ In(s0, χV ) has a unique extension to a standard section of
In(s, χV ) given by

(5.12) Φ(g, s) = λ(ϕ)(g, s) = |a(g)|s−s0(ω(g)ϕ)(0) ∈ In(s, χV ).

The Siegel-Weil formula was originally stated by Weil in a very general manner for dual re-
ductive pairs (see [We2], Chap. IV, Theorème 5). Here, we consider the dual pair (Sp(n), O(V ))
and follow [BF], [KR1] and [KR2].

Theorem 5.1. Assume that r0 = 0 or m−r0 > n+1. Then for all K ′(n)-finite ϕ ∈ S(V (A)n)

i) E(g, s, ϕ) is holomorphic at s = s0 and
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ii) E(g, s0, λ(ϕ)) = αI(g, ϕ) for all g ∈ G(Q)\G(A), where α =

{
1, m > n+ 1,

2, m ≤ n+ 1.

We would like to give a vector valued version of Theorem 5.1 in the same vein as in Prop.
2.2 of [BY], but for lattices of signature (p, q) and the group Sp(n) (see also [St1], Section
3, for the following notations and definitions). To this end, we define a Schwartz-Bruhat
function ϕµ ∈ S(V (Af )n) associated to µ ∈ (L′/L)n = An by

ϕµ = 1µ+L̂n =
∏
p<∞

ϕ(µ)
p =

∏
p<∞

1µ+Lnp .(5.13)

Here Lp = L⊗Zp, which is the p-part of L̂ = L⊗ Ẑ with Ẑ =
∏
p<∞ Zp. For the Archimedean

place we choose the Gaussian ϕp,q0 evaluated at the base point z0 ∈ D (see (4.3)). We associate

to ϕp,q0

∏
p<∞ ϕ

(µ)
p the standard section Φ

(p−q)/2
∞ (s)

∏
p<∞Φ

(µ)
p (s) ∈ In(s, χV ), where

Φ(p−q)/2
∞ (g∞, s) = λ∞(ϕp,q0 )(g∞, s) and

Φ(µ)
p (gp, s) = λp(ϕ

(µ)
p )(gp, s)

(5.14)

for g ∈ G(A). We use the notation

Φµ(s) =
∏
p<∞

Φ(µ)
p (s).

Note that the Schwartz-Bruhat functions ϕµ, µ ∈ An, generate a finite dimensional sub-
space

(5.15) SL =
⊕
µ∈An

Cϕµ

of S(V (Af )n), which is stable under the action of G′(n)(Ẑ) via the Weil representation (see
[St1], Lemma 3.4 and the discussion after the Lemma).

We are now ready to define a vector valued theta function and a vector valued Eisenstein
series. Let φ ∈ S(V (R)n) with associated standard section Φ(g∞, s) = λ(φ)(g∞, s) at the
place infinity and ϕµ and Φµ as above. Then we put

(5.16) ϑL(g, h, φ) =
∑
µ∈An

ϑ(g, h, φ⊗ ϕµ)ϕµ

and

(5.17) EL(g, s,Φ) =
∑
µ∈An

E(g, s,Φ⊗ Φµ)ϕµ.

In terms of θL and EL, based on the same assumptions and notations as in Theorem 5.1, the
Siegel-Weil formula then reads as follows.

Corollary 5.2. For φ ∈ S(V (A)n) with induced section Φ = λ(φ) we have

(5.18) α

∫
O(V )(Q)\O(V )(A)

ϑL(g, h, φ)dh = EL(g, s0,Φ).

We close this section with a result taken from [BF], which will be important later in the
paper. To that end, let κ ∈ N and denote with

(5.19) Φκ
∞(s) = det(k)κ
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the standard section of weight κ at the place infinity. It turns out that the induced section Ξ

associated to the Schwartz function ξ (see (4.11)) is essentially Φ
m/2+l
∞ :

Proposition 5.3 ([BF],Prop. 3.12). Let q, l be as in Section 4 and q+ l even. Then Ξ(g, s) =
λ(ξ)(g, s) is the standard section (5.19) of weight m/2 + l (at the infinite place), i. e.

Ξ(s) = C(s)Φm/2+l
∞ (s).

Here C(s) is a polynomial, which is non-zero for s0 = m
2 −

3
2 and which vanishes identically

for p = 1.

6. A standard L-fundtion and zeta function

In [St2] and [St3] a zeta function and a standard L-function, respectively, is assigned to a
vector valued common Hecke eigenform f of weight κ and type ρA. The usual basic properties
for both functions are shown. In this section we briefly review some of the before mentioned
material and show that the standard L-function is non-zero at some s ∈ C. This result will
turn out to be an important step in the proof of the injectivity of the Kudla-Millson theta
lift. All details can be found in [St2] and [St3].

Because there is a lot of notation used in this section, we list most of it at the beginning of
this section and explain the rest of it within the text or refer to the main sources. There are
several groups involved. The group Qp is a subgroup of GL2(Qp) and Kp means a subgroup of
GL2(Zp). We writeMp and Dp for a subgroup of diagonal matrices inQp and Kp, respectively,
and denote with N(Zp) the group {( 1 x

0 1 ) | x ∈ Zp}. Recall that ω =
⊗

p≤∞ ωp is the global

Weil representation of G′(1)(A) × G(A). The Schrödinger model of ω acts on S(V (A)) and

leaves the subspace SL =
⊗

p SLp (see (5.15)) invariant. ϕ
(0)
p ∈ SLp is defined by (5.13) (with

µ = 0). As usual, we abbreviate the diagonal matrix
(
d1 0
0 d2

)
with the symbol m(d1, d2).

The zeta function Z(s, f) is defined via the eigenvalues λf (m(d2, 1)) of the Hecke operators
T (m(d2, 1)):

(6.1) Z(s, f) =
∑
d∈N

λf (m(d2, 1))d−2s.

Its analytic properties are linked to those of a vector valued Siegel Eisenstein series E2
κ,0 of

genus two transforming according to the Weil representation of G′(2)(Z) by a Rankin-Selberg
type integral formula (see [St2], Thm. 6.4)

∑
λ∈L′/L

(∫
Γ\H
〈f(τ)⊗ eλ, E

2
κ,0(
(
τ 0
0 −ζ

)
, s)〉2 Im(τ)κdµ(τ)

)
eλ

= K(κ, s)Z(2s+ κ, f)f(ζ),

(6.2)

which holds in the region of convergence of E2
κ,0, i. e. for all s with Re(s) > 3−κ

2 . Thus,

Z(s, f) converges in the region of all s with Re(s) > 3+κ
2 . A more general zeta function is

specified in [St3]. It is defined as an Euler product

Z(s, f) =
∏

p prime

Zp(s, f),
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where for each prime p the local zeta function Zp(s, f) is given by

Zp(s, f) =
∑

(k,l)∈Λ+

λf (m(pk, pl))p−s(k+l).

Here Λ+ means the set

Λ+ =
{

(k, l) ∈ Z2 | 0 ≤ k ≤ l and k + l ∈ 2Z
}
.

The zeta function Z(s, f) can be expressed in terms of Z(s, f) by the following relation

Z(s, f)

=
∏
p||A|

((
e(sig(Ap)/8)

|Ap|1/2
− 1

)
+ Lp(2s+ κ− 2, χA⊥p )

)
L(2s+ κ− 2, χA)Z(s+ κ− 2, f),

(6.3)

where

i) χA and χA⊥p are Dirichlet characters, which are defined in [St3], Section 3,

ii)

Lp(s, χA⊥p ) = (1− χA⊥p (p)p−s)−1,

iii) L(s, χA) is the Dirichlet L-series associated to χA.

From (6.3) we can immediately conclude that Z(s, f) converges for s ∈ C with Re(s) > 7−κ
2 .

In [St3] an isomorphism between Sκ,A and a space of vector valued automorphic forms
Aκ(ωf ) of type ω is established. Vector valued spherical Hecke algebras depending on a
representation are well studied objects. In [St3] for each prime p the structure of a subal-
gebra of the vector valued spherical Hecke algebra H(Qp//Kp, ωp) depending on the Weil
representation ωp is determined. Two cases have to be considered. In both cases we let

{Tk,l | (k, l) ∈ Λ+}

be a set of generators. If p divides |A|, this algebra is denoted with H+(Qp//Kp, ωp) and

Tk,l(k1m(pr, ps)k2) = ωp(k1) ◦ T (k, l) ◦ ωp(k2)

with

T (k, l)(m(pr, ps))ϕ
(µp)
p =

g(Ap)

gpl(Ap)
1Kpm(pk,pl)Kpϕ

(p(l−k)/2µp)
p =

g(Ap)

gpl(Ap)
1Kpm(pk,pl)Kpϕ

(0)
p

for k < l and

T (k, k)(m(pr, ps)) =
g(Ap)

gpk(Ap)
1Kpm(pk,pk)Kp idSLp

for k = l. If p - |A|, the whole spherical Hecke algebra H(Qp//Kp, ωp) is considered. As ωp
acts trivially in this case, its structure is much easier and well known. In this case we have

Tk,l = 1Kpm(pk,pl)Kp idSLp .

Here gpk(Ap) (and g(Ap)) is given by (3.6). Each local Hecke algebra acts on Aκ(ωf ) by a

Hecke operator T Tk,l . It is important to realize that this action is compatible with the action
of Hecke operators on Sκ,A. More specifically, the identity

(6.4) T Tk,l(Ff ) = F
p(k+l)(

κ
2−1)T (m(p−k,p−l))f
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holds, where Ff ∈ Aκ(ωf ) corresponds to f ∈ Sκ,A and T (m(p−k, p−l)) means the Hecke

operator attached to m(p−k, p−l) (cf. [St3], Thm. 6.9). If F is an automorphic eigenform of
all Hecke operators T Tk,l , the corresponding eigenvalues give rise to an algebra homomorphism

λF,p : H+(Qp//Kp, ωp)→ C, T 7→ λF,p(T ).

This algebra homomorphism determines in turn an unramified character χF,p on the group
Mp. The standard L-function L(s, F ) of a common eigenform F is constructed as an Euler
product

(6.5) L(s, F ) =
∏
p<∞

Lp(s, F )

with

(6.6) Lp(s, F ) =


1+χ

(1)
F,p(p)χ

(2)
F,p(p)p−2s+1

(1−χ(1)
F,p(p2)p−2s+1)(1−χ(2)

F,p(p2)p−2s+1)
, (p, |A|) = 1,

1
C(Ap)

1+χ
(1)
F,p(p)χ

(2)
F,p(p)p−2s+1

(1−χ(1)
F,p(p2)p−2s+1)(1−χ(2)

F,p(p2)p−2s+1)
, p | |A|.

Here χF,p = (χ
(1)
F,p, χ

(2)
F,p) is the unramified character mentioned before and C(Ap) is some

constant depending on the p-group Ap (see [St3], Lemma 7.3). If Ff is the automorphic form
belonging to f ∈ Sκ,A and L(s, Ff ) the standard L-function of Ff , we define the standard
L-function of f naturally by

L(s, f) = L(s, Ff ).

There is a relation between the standard zeta function Z(s, f) and the standard L-funktion
L(s, f). We have

(6.7) Z(s+
κ

2
− 1, f) = L(s, f).

As Z(s, f) converges for all s ∈ C with Re(s) > 7−κ
2 , it follows from (6.7) that L(s, f)

converges for all s ∈ C with Re(s) > 9
2 − κ.

Theorem 6.1. Let κ = m
2 + l with m and l as in Sections 2 and 4 satisfying m

2 > l+3. Then

the standard L-function L(s, f) is non-zero for s = −m
4 −

3
2 l + 3.

Proof. The condition m
2 > l+3 is equivalent to m

2 > 3
2 + κ

2 . Therefore, m2 lies inside the region
of convergence of Z(s, f). The identity (7.19) implies immediately that L(s, f) converges for
s = −m

4 −
3
2 l + 3. Alternatively, this can be confirmed directly by checking that

3− m

4
− 3l

2
>

9

2
− m

2
− l.

L(s, f) is defined as an Euler product. Thus, it suffices to prove that each factor of this
product is non-zero at the point s in question. In view of (6.6) this boils down to show that

(6.8) 1 + χF,p(m(p, p))p
m
2

+3l−5 = 1 + χ
(1)
F,p(p)χ

(2)
F,p(p)p

m
2

+3l−5

is non-zero. For this we need to calculate the character χF,p evaluated at m(p, p). It is
determined by the algebra homomorphism λF,p via the relation

λF,p(Tk,l) =

{∑
(r,s)∈Z2 S(〈Tk,l, ϕ

(0)
p 〉)(m(pr, ps))χF,p(m(pr, ps)), (p, |A|) = 1,∑

(r,s)∈Z2〈S(Tk,l)(m(pr, ps)), ϕ
(0)
p 〉χF,p(m(pr, ps)), p | |A|,

(6.9)
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cf. equation (7.21) in [St3]. Here S means the classical Satake map and S the Satake map
introduced in [St3], (5.12). These equations simplify significantly if we choose Tk,l = T1,1. We
find immediately from the calculations in the proof of Theorem 5.11 of [St3] that

(STk,k(m(pk, pk)) = Tk,k(m(pk, pk))
|SN(Zp)
Lp

=
g(Ap)

gpk(Ap)
1Dpm(pk,pk)Dp id

S
N(Zp)
Lp

.
(6.10)

The same arguments lead in the case of p - |A| to

(6.11) (STk,k(m(pk, pk)) = 1Dpm(pk,pk)Dp id
S
N(Zp)
Lp

.

Replacing the Satake maps in (6.9) in both cases with the right-hand side of (6.10) and (6.11),
we obtain

(6.12) λF,p(T1,1) =

{
g(Ap)
gp(Ap)χF,p(m(p, p)), p | |A|,
χF,p(m(p, p)), (p, |A|) = 1.

Combining the equations (3.14) and (3.15) of [St3] with (6.4), yields a relation between the
eigenvalues λF.p(Tk,l) and λf (T (m(pl−k, 1)):

λF,p(Tk,l) =

p(k−l)(κ/2−1) gpk (A)

g(A)
g(A)

g
pk+l

(A)λf (m(pl−k, 1)), p | |A|,

p(k−l)(κ/2−1)λf (m(pl−k, 1)), p - |A|.
(6.13)

In the case p | |A| we would like to further simplify the expression on the right-hand side of
(6.13). First we keep in mind that pk+l is a square as (k, l) is an element of Λ+. This implies

that gpk+l(A) = g(A). To evaluate the fraction
g
pk

(A)

g(A) , we decompose A in the following way

A = Ap ⊕A⊥p ,

where A⊥p is the orthogonal complement of the p-group Ap in A. Following [St3], p. 10 ff, we
have for any r ∈ N

g(A)

gpr(A)
=

g(Ap)

gpr(Ap)

g(A⊥p )

gpr(A⊥p )

=
e(sig(Ap)/8)

|Ap|1/2
χA⊥p (pr),

where χA⊥p is the quadratic character n 7→
(

n
|A⊥p |

)
. For the evaluation of of

g(Ap)
gpr (Ap) we have

used Milgram’s formula and the fact that gpr(Ap) = |Ap|. Taking this into account, we obtain
in the case p | |A|

(6.14) λF,p(Tk,l) = p(k−l)(κ/2−1) gpk(Ap)

g(Ap)
χA⊥p (pk)λf (m(pl−k, 1)).
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Combining the equations (6.12) and (6.14), we find

χF,p(m(p, p)) =


(
gp(Ap)
g(Ap)

)2
χA⊥p (p)λf (m(1, 1)), p | |A|,

χA⊥p (p)λf (m(1, 1)), (p, |A|) = 1

=

{
|Ap|e(− sig(Ap)/4)χA⊥p (p), p | |A|,
χA⊥p (p), (p, |A|) = 1.

(6.15)

Replacing χF,p(m(p, p)) in (6.8) with the right-hand side of (6.15) gives

(6.16) 1 + χF,p(m(p, p))p
m
2

+ 3
2
l−5 =

{
1 + |Ap|e(− sig(Ap)/4)χA⊥p (p)p

m
2

+3l−5, p | |A|,
1 + χA⊥p (p)p

m
2

+3l−5, (p, |A|) = 1.

Note that Ap is anisotropic and m
2 > l + 3. Thus, as |Ap| ≥ p, we have the estimate

|Ap|p
m
2

+3l−5 ≥ p

and we can easily conclude that 1 + χF,p(m(p, p))p
m
2

+ 3
2
l−5 is non-zero in both of the above

treated cases. �

7. Injectivity of the Kudla-Millson theta lift

In this section, we generalize the results in [BF], Chap. 4, to cusp forms of type ρA where
L is not unimodular. We follow quite closely the steps of the proof in [BF], which carry over
with some modifications to the general case. To this end, we keep the notation of Section 4
and return to the adelic setup of Section 5 as we want to make use of the adelic version of
the Siegel-Weil formula. Throughout this section we suppose that the weight κ is fixed and
equal to

κ =
m

2
+ l.

Let C(V ) be the Clifford algebra of the quadratic space V . It splits into a direct sum

C(V ) = C+(V )⊕ C−(V ),

where C+(V ) is the subalgebra of even elements of C(V ). We write C+(V )× for the invertible
in C+(V ). The general spin group H = GSpin(V ) is defined by

GSpin(V ) =
{
g ∈ C+(V )×

∣∣ gV g−1 = V
}
,

One can show that the action α of H on V given by

(7.1) g 7→ α(g), α(g)(v) = gvg−1

leaves the quadratic form Q invariant. In fact, the group H is connected to SO(V ) by the
following exact sequence

1 −→ Gm −→ H
α−−→ SO(V ) −→ 1.

Note that the same construction generalizes to lattices L in V with the inclusion C(L) ⊂ C(V )
and GSpin(L) ⊂ GSpin(V ). A good reference for further details is [AD]. Let KH

f =
∏
pK

H
p

be an open compact subgroup of H(Af ) which leaves L invariant and acts trivially on A (see
Remark 7.1 for for the action on L and L′/L). To lighten the notation, we write K instead
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of KH
f . Then there is a Shimura variety XK over Q associated to the Shimura datum (D,H)

whose C-points are of the form

(7.2) XK(C) = H(Q)\(D ×H(Af ))/K.

We identify XK with XK(C). It is well known (see [Mi], Lemma 5.13, or [Ku1],p. 44-45)
that the Shimura variety XK allows a finite decomposition into connected components. To
describe these components, we note that by the strong approximation theorem one has

(7.3) H(Af ) =
⊔
i

H(Q)+hiK,

with hi ∈ H(Af ), where H(Q)+ = H(R)+∩H(Q) and H(R)+ is the component of the identity
of H(R). Then

(7.4) XK
∼=
⊔
i

Γi\D+

with Γi = H(Q)+ ∩ hiKh−1
i being a congruence subgroup of H(Q)+. Throughout the rest

of the paper we assume that the image of H(Q)+ ∩ K in SO+(V )(Af ) is isomorphic to a
subgroup of finite index of the discriminant kernel Γ(L) (see Remark 8.2). It is well known
that XK has the analytic structure of a complex orbifold and is a complex manifold if K is
neat. The same holds for the locally symmetric spaces Γi\D+. The isomorphism (7.4) yields

(7.5) Aq(XK) ∼= [Aq(D)⊗ C∞(H(Af ))]H(Q)×K ∼=
⊕
i

Aq(D+)Γi ,

where the second isomorphism is obtained by mapping a differential form η(z, h) to the vector
(η(z, hi))i, see [Ku1], p. 69.

Remark 7.1. i) The action of H(Af ) on L and L′ via α in (7.1) is understood as action

on L = ∩p (V (Q) ∩ Lp) = V (Q) ∩ L̂ and L′ = ∩p
(
V (Q) ∩ L′p

)
, respectively. We write

Lh = α(h)(L).

As (α(h)(L))′ = α(h)(L′), the action of h ∈ H(Af ) on L and L′ induces an action

on the discriminant group A. We obviously have A ∼= (Lh)′/Lh and write Ah for
(Lh)′/Lh and hµ = α(h)(µ) for any µ ∈ A. As is pointed out in [HMP], the map

h ·
∑
µ∈A

cµeµ =
∑
µ∈A

cµehµ

defines an isomorphism C[A] ∼= C[Ah] and isomorphic representations ρA and ρAh for
each h ∈ H(Af ). Consequently, the spaces Hκ,A and Hκ,Ah of weak Maass forms
are isomorphic (by the map f 7→ h · f) and clearly the same is true for all specified
subspaces in Section 3. We write fh for h · f .

We will later make use of the following fact, which can be found in [Ho], Lemma
(10.2.8): If the image of ΓK := Γ1 = H(Q)+ ∩K is exactly Γ(L), then the image of
Γi = H(Q)+ ∩ hiKh−1

i is given by Γ(Lhi).
ii) Let ϕq,l be the Schwartz form (4.8) and ϕµ, µ ∈ A as in (5.13). Attached to ϕq,l and

ϕµ, we define a vector valued Siegel theta function on D × H(Af ). Similar to (5.4)
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we put

ϑ((gτ , 1f ), (z, h), ϕq,l ⊗ ϕµ) =
∑

x∈V (Q)

ϕµ(h−1x)ω((gτ , 1f ))ϕq,l(x, z),

where h ∈ H(Af ) and gτ = n(u)m(
√
v) ∈ G′(1) moves i to τ = u+ iv ∈ H. Analogous

to (2.13), we subsequently set

ΘA(τ, (z, h), ϕq,l) =
∑
µ∈A

ϑ((gτ , 1f ), (z, h), ϕq,l ⊗ ϕµ)ϕµ

= v−κ/2
∑
µ∈A

∑
λ∈h(µ+L)

ϕq,l(
√
vλ, z)eπi(λ,λ)uϕµ,

(7.6)

where h(µ + L) is meant in sense of part i) of this remark. We sometimes use the
notation Θµ(τ, (z, h), ϕq,l) for the µ-th component of ΘA.

Note that ΘA descends to a q-form on XK since K leaves A invariant and stabilizes L.
In this case ϕµ is also invariant under the action of K. Based on Theorem 4.1, the usual
arguments then yield the following important properties of ΘA(τ, (z, h), ϕq,l) (cf. [FM], Prop.
7.1, and [Ku2], p. 301).

Theorem 7.2. Let K ⊂ H(Af ) be as above. Then ΘA(τ, (z, h), ϕq,l) defines a Syml(V )-valued
closed q-form on the Shimura variety XK . Also, as a function on H it is a non-holomorphic
vector-valued modular form of weight κ transforming according to ρA.

In view of this theorem and the fact that ϑ((gτ , 1f ), h, ϕq,l(z)⊗ ϕµ) is slowly increasing in
τ (see [Ku2], p. 324), the following definition makes sense.

Definition 7.3. Let f =
∑

λ∈L′/L fλeλ ∈ Sκ,A be a cusp form. Then f 7→ Λ(f) with

(7.7) Λ(f)(z, h) :=

∫
Γ\H
〈f(τ),ΘA(τ, (z, h), ϕq,l)〉 Im(τ)κdµ(τ)

defines a linear map

Λ : Sκ,A −→ Zq(XK , S̃ym
l
(V ))

Here S̃ym
l
(V ) is the local system on D associated to Syml(V ).

Following [BF], the L2-norm of Λ is defined as

(7.8) ‖Λ(f)‖22 =

∫
XK

Λ(f) ∧ ∗Λ(f).

The subsequent proposition ensures that Λ(f) is square integrable. It follows from the
scalar valued companion statement in Prop. 4.1, [BF]. To phrase this result, we introduce
the following notation:

In accordance with (7.6) we write

ΘA2(τ1, τ2, (z, h), φq,l)

= (v1v2)−κ/2
∑

(λ,ν)∈A2

 ∑
x∈V 2(Q)

ϕ(λ,µ)(h
−1x)ω∞(ι(gτ1 , gτ2))φq,l(x, z)

ϕ(λ,µ),
(7.9)
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where φq,l is the Schwartz function in (4.10), ϕ(λ,µ) = ϕλ⊗ϕµ and ι is the standard embedding
in (2.16). Finally, we set

(7.10) I(τ1, τ2, φq,l) =

∫
XK

ΘA2(τ1, τ2, φq,l)µ,

where µ is the volume form on D specified in Section 4. A similar theta integral is also studied
in [Ku2]. Given Proposition 7.6, this integral exists if Weil’s convergence criterion is fulfilled.

Proposition 7.4. Take the assumptions of Definition 7.3 and let m > r0 + 3 such that
Theorem 5.1 holds. Then Λ(f) is square integrable and

(7.11) ‖Λ(f)‖22 =
(
f(τ1)⊗ f(τ2), I(τ1,−τ2, φq,l)

)
,

where (·, ·) is the Petersson scalar product on Sκ,A ⊗ Sκ,A.

Proof. As in Prop. 4.1, [BF], we argue that ‖Λ(f)‖22 indeed exists if (7.11) holds. As proved
in [Ku2], Theorem 3.1, in a more general and complicated situation and also done in the
scalar valued case in Prop. 4.1 of [BF], we may exchange the order of the integrals over XK

and Γ\H. Following the remaining proof of Prop. 4.1, for any pair λ, ν ∈ A we also have

Θλ(τ1, ϕq,l ⊗ ϕλ) ∧Θν(τ2, ∗ϕq,l ⊗ ϕν) = Θ(λ,ν)(τ1,−τ2, φq,l ⊗ (ϕλ ⊗ ϕν))µ,

where Θ(λ,ν) is the component of ΘA2 belonging to the index (λ, µ) ∈ A2. In view of (3.11)
we obtain the assertion. �

In the next result we want to replace the theta kernel φq,l in the integral I with the Schwartz
function ξ in (4.11) with the help of the relation (4.12). To this end, we have to interpret ξ

as an element of
[
S(V (R)2)⊗ C∞(D)

]G(R)
. In view of Lemma 4.2, i), we may set

(7.12) ξ(x, z) = ξ(g−1x)

with g ∈ G(R) such that gz0 = z, where z0 ∈ D is a fixed base point.

Proposition 7.5. Let ξ be the Schwartz function in (7.12), θA2(τ1, τ2, (z, h), ξ) and I(τ1, τ2, z, ξ)
as in (7.9) and (7.11), respectively with φq,l replaced by ξ. Then

(7.13) ‖Λ(f)‖22 =
(
f(τ1)⊗ f(τ2), I(τ1,−τ2, ξ)

)
.

Moreover, Λ vanishes identically if p = 1 and q + l > 1.

Proof. The result is an immediate consequence from Prop. 4.3 and Corollary 4.4 in [BF]
combined with (7.11). The second assertion is due to Lemma 4.2, iii). �

The next proposition shows that the theta integral I over XK can be written in terms of
the theta integral in the Siegel-Weil formula in (7.13). This justifies the convergence of I,
which was required in Prop. 7.4. The analogous statement in a scalar valued setting can be
found in [BF], Prop. 4.6, [Ku2], Prop. 4.17. These papers presume that XK is a manifold
and require the condition

(7.14) Z(Af ) ∩K = Ẑ×

to be satisfied, where Z(Af ) means the center of H(Af ). However, the proof of Prop. 4.17 in
[Ku2] should still work if XK is an orbifold. But for our purposes it sufficient for XK to be
a complex manifold.
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Proposition 7.6. Let m > r0+3 such that Theorem 5.1 holds. Suppose further that the image
α(H(Q)+∩K) in SO(V )(Af ) is isomorphic to the discriminant kernel and that Z(Af )∩K ∼=
Ẑ×. Then

(7.15)
1

vol(XK , µ)
I(τ1, τ2, ξ) = (v1v2)−κ/2

∫
O(V )(Q)\O(V )(A)

ϑL(ι(gτ1 , gτ2), h, ξ)dh.

Proof. By Remark 7.1, i), α(Γi) ∼= Γ(Lhi) for all i. It is stated in [Br1], p. 115, that
Γ(Lhi)/D+ is Riemannian manifold, which implies that XK is a complex manifold. Applied
to each component on both sides of 7.15, Prop. 4.6 in [BF1] and Prop. 4.17 in [Ku2] yields
the claimed assertion. �

The Siegel-Weil formula 5.2 combined with Proposition 7.6 allows us to express the L2-norm
of Λ(f) as a Rankin-Selberg type integral. The doubling method for our setup then leads to
a formula for ‖Λ(f)‖22 in terms of a special value of the standard zeta function associated to
a common Hecke eigenform f . For the next theorem we use the following notation

K(Ap,m, l) =
∏
p||A|

((
e(sig(Ap)/8)

|Ap|1/2
− 1

)
+ Lp

(m
2
− l + 2, χA⊥p

))−1

(see Section 6). Under the assumption m
2 > l − 1 by taking into account that χA⊥p is a

quadratic Dirichlet character, we find that(
e(sig(Ap)/8)

|Ap|1/2
− 1

)
+ Lp

(m
2
− l + 2, χA⊥p

)
6= 0

for each p in the above product.

Theorem 7.7. Let m, q, l be as before with m > max(6, 2l − 2, 3 + r0) and s0 = (m − 3)/2.
Furthermore, we assume that the conditions of Proposition 7.6 are satisfied and that q + l,
κ = m

2 + l are even and A is an anisotropic quadratic module. If f ∈ Sκ,A is a common

eigenform of all Hecke operators T
(
d2 0
0 1

)
, we have

1

vol(XK , µ)

‖Λ(f)‖22
‖f‖22

= C(s0)K(κ,−l/2)L
(m

2
− l + 2, χA

)−1
×

×
∏
p||A|

K(Ap,m, l)L(−m
4
− 3l

2
+ 3, f),

(7.16)

where

(7.17) K(κ, s) =
e(sig(A)/8)

|A|1/2
(−1)s+

κ
2 22−2s−κ+1 Γ(κ+ s− 1)

Γ(κ+ s)
.

Proof. By the Propositions 7.4, 7.6 and the Siegel-Weil formula in Corollary 5.2 we have

1

vol(XK , µ)
‖Λ(f)‖22 =

(
f(τ1)⊗ f(τ2),

1

vol(XK , µ)
I(τ1,−τ2, ξ)

)
=

(
f(τ1)⊗ f(τ2), (v1v2)−κ/2

∫
O(V )(Q)\O(V )(A)

ϑL(ι(gτ1 , g−τ2), h, ξ)dh

)

=

f(τ1)⊗ f(τ2), (v1v2)−κ/2
∑

(λ,ν)∈A2

E(ι(gτ1 , g−τ2), s0,Ξ⊗ Φ(λ,ν))ϕ(λ,ν)

 .

(7.18)
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Bearing Proposition 5.3 in mind, we see that

(v1v2)−κ/2
∑

(λ,ν)∈A2

E(ι(gτ1 , g−τ2), s0,Ξ⊗ Φ(λ,ν))ϕ(λ,ν)

is nothing else but the Eisenstein series of genus 2 defined in [St1], Def. 3.13. That being
said, we may apply Lemma 3.14 of [St1] and obtain for the right-hand side of (7.18)

C(s0)

(
f(τ1)⊗ f(τ2), E2

κ,0(
(
τ1 0
0 −τ2

)
,− l

2
)

)
.

By means of [St2], Theorem 6.4, this becomes

C(s0)K(κ,−l/2)Z(2(− l
2

) + κ, f)

∫
Γ\H

∑
λ∈A

fλ(τ2)fλ(τ2) Im(τ2)κdµ(τ2).

As m
2 > l − 1, it is a classical result that L

(
m
2 − l + 2, χA

)
6= 0 and we may then express

Z(m2 , f) in terms of Z(−l+ 2, f) using the equation (3.24) of [St3]. Subsequently, employing
(7.25) of [St3], yields

Z(
m

2
, f) =

∏
p||A|

((
e(sig(Ap)/8)

|Ap|1/2
− 1

)
+ Lp

(m
2
− l + 2, χA⊥p

))−1

×

L
(m

2
− l + 2, χA

)−1
L

(
−m

4
− 3

2
l + 3, f

)
.

(7.19)

�

As a corollary we can deduce the injectivity of the lifting Λ.

Corollary 7.8. Under the conditions of Theorems 7.7 the Kudla-Millson theta lift Λ (7.7) is
injective.

Proof. It suffices to prove that ‖Λ‖22 is non-zero. In view of (7.16) and (7.17) we need to show

that L(−m
4 −

3l
2 + 3, f) is non-zero. But this is just the assertion of Theorem 6.1. �

8. Surjectivity of the Borcherds lift

In this section we pick up the question from the introduction whether a modular form for
some orthogonal group with zeroes and poles located on Heegner divisors can be realized
as a Borcherds lift of weakly holomorphic modular forms. The most general results in this
direction are given in [Br2]. We focus here on Theorem 1.4 in [Br2], which essentially only
assumes that the level of the lattice L is a prime number. In particular, it is not required
that L splits a lattice of the form U ⊗ U(N) over Z. Our assertion is in the same vein. We
do not impose any further restrictions on the lattice, but assume that the discriminant group
A = L′/L is anisotropic. Thus,

A =
⊕
p

Ap,

where each p-component Ap is anisotropic (see (2.2)).
Before stating our results, we briefly gather the necessary facts on modular forms on or-

thogonal groups and review in some detail the involved lifts in an adelic setting suited to our
needs. We follow loosely [Br1], [Ku2]. We adopt the notation from Section 4 and 7, but restrict
ourselves to the Hermitian case and assume that l (the parameter of the Schwartz form ϕq,l) is
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zero. Accordingly, (V (R), Q) is a quadratic space of type (p, 2) and D is the Grassmannian of
negative definite oriented subspaces z ⊂ V (R) of dimension 2. By D+ we mean one of its two
connected components. Let G(R)+ be the subgroup of G(R) = O(V )(R) which preserves D+

and D−. It acts transitively on D+. Also, we define and write XK = H(Q)\D ×H(Af )/K
with the same meaning as in the section before. In particular, K is an open compact sub-
group of H(Af ) which preserves L and acts trivially on A. Furthermore, there are two weights
involved in this section. On the one hand we reserve κ for m

2 = 1 + p
2 , on the other hand we

use ` = 2− κ = 1− p
2 . We stick with this notation throughout this section.

To define an analogue of the upper half plane in the orthogonal setting, we give D a complex
structure. For this purpose, we consider the complexified space V (C) = V ⊗Q C of V and
extend (·, ·) to a C-bilinear form. Then

(8.1) K = {[z] ∈ P (V (C)) | (z, z) = 0 and (z, z) < 0}
is a complex manifold with two connected components, which are exchanged by z 7→ z. For
[z] ∈ K we utilize the notation z = x+ iy. In terms of this decomposition one can show that
[z] 7→ Rx+ Ry is a bijection between K and D inducing a complex structure on D.

We write K+ for the component in K, which corresponds to D+. Further, denote with K̃+

the preimage in V (C) of K+ under the natural projection into the projective space P (V (C)).
The following definition is taken from [Eh], Def. 1.5.21.

Definition 8.1. A function F : K̃+ × H(Af ) → C is called meromorphic modular form of
weight r ∈ Z, level K ⊂ H(Af ) and unitary character χ of finite order for H(Q) if

i) z 7→ f(z, h) is meromorphic for any fixed h ∈ H(Af ),
ii) f(z, hk) = f(z, h) for all k ∈ K,
iii) f(tz, h) = t−rf(z, h) for all t ∈ C\{0},
iv) f(γz, γh) = χ(γ)f(z, h) for all γ ∈ H(Q) ,

v) and f is meromorphic at the boundary components of K̃+.

Remark 8.2. Let L be a lattice, which is additionally assumed to be a maximal lattice (that
is there is no even lattice M with L (M ⊂ V ) and set

(8.2) K = H(Af ) ∩ C+(L̂)×,

where L = L ⊗ Ẑ as in Section 5 and C+(L̂)× is the unit group of the even Clifford algebra

of the lattice L̂. With this choice Andreatta et. al showed that the C-points of the GSpin-
Shimura variety (7.2) is connected if p ≥ 2 or the order of A is square-free (see [AGHM],
Prop. 4.1.1). In this case and in view of (7.4) we consequently have

XK(C) = ΓK\D+.

It turns out that the group ΓK = H(Q)+∩K can be specified explicitly: The map α restricted

to K defines a homomorphism K → SO(L̂) whose exact image is the subgroup of elements

acting trivially on the discriminant group L′/L ∼= L̂′/L̂. Therefore α(ΓK) can be identified
with the discriminant kernel Γ(L) as defined in [Br1] or [Br2]. We may conclude that in this
setting for any meromorphic modular form F in the sense of Definition 8.1 the function F (·, 1)
behaves like a meromorphic modular form of the same weight for the orthogonal group Γ(L).
Finally, it is worth mentioning that owing to its definition, K satisfies (7.14).

Examples of modular forms of Definition 8.1 can be constructed by means of the celebrated
Borcherds lift. In its original form ([B], Theorem 13.3), it takes weakly holomorphic modular
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forms f ∈ M !
`,A of weight ` to meromorphic modular forms on orthogonal modular groups.

Bruinier ([Br1]) extended the lift to harmonic weak Maass forms f ∈ H+
`,A as a supply of

inputs. Here we recall in line with Def. 7.3 the regularized theta lift on D × H(A). Its
definition is based on an integral of the form

(8.3) ΦL(f)(z, h) =

∫ reg

Γ\H
〈f(τ),ΘA(τ, (z, h), ϕp,2∞ )〉dµ(τ),

where ΘA is defined in (7.6) with ϕq,l replaced with the Gaussian ϕp,2∞ (cf. (2.14)). Since f
grows exponentially for Im(τ)→∞, the corresponding integral over Γ\H has to be regularized
according to Borcherds [B], p. 514 ff. The regularized integral is denoted with

∫ reg
Γ\H.

Remark 8.3. Let f ∈ H+
`,A (or an element of M`,A!) and ΦL(f)(z, h) the regularized theta

lift (8.3). Howard observed in [HMP] that this adelic theta lift can be expressed as a classical
regularized theta lift. More precisely, in terms of the notation of Remark 7.1 we have

ΦL(f)(z, h) = ΦLh(fh)(z)

=

∫ reg

Γ\H
〈fh(τ),ΘAh(τ, z, ϕp,2∞ )〉dµ(τ),

(8.4)

which can be easily confirmed with the help of (7.6). For the same reasons, the same holds
for the Kudla-Millson theta lift, i. e.

Λ(f)(z, h) = Λ(fh)(z)

=

∫
Γ\H
〈fh(τ),ΘAh(τ, z, ϕq,l)〉dµ(τ),

(8.5)

where the underlying lattice for the lift on the right-hand side is Lh as well.

It is a fundamental theorem of Borcherds ([B], Thm. 6.2, or [Br2], Thm. 2.12) that ΦL

is a smooth function on XK apart from logarithmic singularities along a certain divisor on
XK . This divisor, denoted with Z(f), is determined by the principal part of the lifted form f
and is a linear combination of so-called Heegner divisors, which we will now briefly describe.
Following [Ku1], let x ∈ V (Q) with Q(x) > 0 and Vx = x⊥ the orthogonal complement
of x in V (Q). We write Hx for the stabilizer of x in H. As is noted in [Ku2], we have
Hx
∼= GSpin(Vx). Further,

(8.6) Dx = {z ∈ D | (z, x) = 0}

defines an analytic set of codimension one in D. We put D+
x = Dx ∩D+. For h ∈ H(Af ) we

define a divisor Z(x, h,K) on XK by the image of the map

Hx(Q)\Dx ×Hx(Af )/
(
H(Af ) ∩ hKh−1

)
−→ H(Q)\D ×H(Af )/K,

(z, h1) 7→ (z, h1h).
(8.7)

It can be shown that Z(x, h,K) is rational over Q. Let µ ∈ A. In terms of an n ∈ Q>0

and the Schwartz function ϕµ (see (5.13)) we introduce a weighted sum Z(n, ϕµ,K) of these
divisors. To that end, we consider the set

(8.8) Ωn = {x ∈ V | Q(x) = n} .
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According to [Ku2], we may write for a fixed x0 ∈ Ωn

(8.9) supp(ϕµ) ∩ Ωn(Af ) =
⊔
r

Kx−1
r · x0

with a finite set of elements xr ∈ H(Af ). We then define Z(n, ϕµ,K) by

(8.10) Z(n, ϕµ,K) =
∑
r

ϕµ(x−1
r · x0)Z(x0, xr,K)

and Z(n, ϕµ,K) = 0 if Ωn(Q) is empty. Finally, Z(f) is given by

(8.11) Z(f) =
1

2

∑
µ∈A

∑
n>0

c+(−n, µ)Z(n, ϕµ,K).

Here c+(−n, h) are the Fourier coefficients of the principal part of f (see (3.16)).
With respect to (7.4) the divisor Z(n, ϕµ,K) can be decomposed into a finite sum of divisors

Zi(n, ϕµ,K), where Zi(n, ϕµ,K) is a divisor on the connected component Γi\D+:

Z(n, ϕµ,K) =
∑
i

Zi(n, ϕµ,K) with Zi(n, ϕµ,K) =
∑

x∈Γi\Ωn(Q)

ϕµ(h−1
i x) pri(D

+
x ),(8.12)

where pri maps z ∈ D+
x to Γiz in Γi\D+. Note that Zi(n, ϕµ,K) can be written in a more

explicit way by

(8.13) Zi(n, ϕµ,K) =
∑

λi∈Γi\hiµ+Lhi
Q(λi)=n

pri(D
+
λi

).

Also, as K leaves L invariant and stabilizes A, the same holds for Γi regarding Lhi . We
use the notation µi = hiµ. Thus, the sum in (8.13) is invariant under the action of Γi and
consequently

Zi(n, ϕµ,K) = pri

 ∑
λi∈hiµ+Lhi
Q(λi)=n

D+
λi


=

∑
λ∈µi+Lhi
Q(λ)=n

D+
λ .

(8.14)

Note that the last expression in (8.14) is just the Heegner divisor H(µi, n) as defined in
[Br1]. For simplicity, we write Z(n, µ) and Zi(n, µi) instead of Z(n, ϕµ,K) and Z(n, ϕµ,K),
respectively.

Now Theorem 13.3 in [B] can be transferred to our adelic setting (see [Ku2], Thm 1.3 or
[Eh], Thm. 1.8.1), which reads as follows:

Theorem 8.4. Let f ∈ M !
`,L with c(µ, n) ∈ Z for all m < 0 and c(µ, n) ∈ Q for all n ∈

Z + Q(µ). Then there is a function ΨL(f)(z, h) on D ×H(Af ) such that

i) ΨL(f)(z, h) is a meromorphic modular form of weight c(0, 0)/2, level K and some
unitary character of finite order for H(Q).

ii) the divisor of ΨL(f)(z, h) on XK is given by Z(f).
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iii) ΨL is related to ΦL by the equation

(8.15) −4 log |ΨL(f)(z, h)| = ΦL(f)(z, h) + c(0, 0)(2 log | Im(z)|+ log(2π) + Γ′(1))

Equivalently we may write

(8.16) −2 log ‖ΨL(f)(z, h)‖2Pet,c(0,0)/2 = ΦL(f)(z, h) + c(0, 0)(log(2π) + Γ′(1)),

where ‖ΨL(f)(z, h)‖Pet,r = |ΨL(f)(z, r)|| Im(z)|r is the Petersson norm weight r with

| Im(z)| = |(Im(z), Im(z))|1/2.

Note that we get for h = 1 the original regularized theta lift ΦL(f)(z, 1) and the orig-
inal Borcherds lift ΨL(f)(z, 1) back. Also, in view of Remark 8.3, we have ΨL(f)(z, h) =
ΨLh(fh)(z), i. e. the classical Borcherds lift of fh for the orthogonal group attached to the
lattice Lh.

We now address the main question of this paper. We proceed as in [BF], Sect. 1.1. The
proof given therein is essentially based on [BF1], Thm. 6.1, and [Br1], Thm. 4.23. We present
for both theorems a version in our adelic setup fitting to the statement of the Kudla-Millson
theta lift and its injectivity in Section 7. As both theorems rely on the fact that the underlying
Hermitian space is a Riemannian manifold, we adopt this assumption (although the theorem
below should also hold for the more general situation where XK is a complex orbifold).

Theorem 8.5. Let V be of type (p, 2) and f ∈ H+
`,A− with the Fourier expansion as in (3.15)

and suppose that α(ΓK) = Γ(L). Then for all (z, h) ∈ (D\Z(f))×H(Af ) the identity

(8.17) ddcΦL(f)(z, h) = Λ(ξ`(f))(z, h) + c+(0, 0)Ω

holds, where Ω is the Kähler form on D as specified in [BF1].

Proof. Let XK
∼=
⊔
i

Γi\D+ with Γi = H(Q)+ ∩ hiKh−1
i and hi ∈ H(Af ) (cf. (7.4)). By

virtue of Remark 8.3 for each hi we have that fhi ∈ H`,(Ahi )− . According to [B], 13.3 the

divisor of ΨLhi (f
hi) is given by

Z(fhi) =
1

2

∑
µ∈A

∑
n>0

c+(−n, µ)Zi(n, ϕµi ,K)

with Zi(n, ϕµi ,K) being defined in (8.14). Theorem 6.1 in [BF1] combined with Remark 8.3
now yields

(8.18) ddcΦL(fhi)(z) = Λ(ξ`(f
hi))(z) + c+(0, 0)Ω

for all z ∈ D\Zi(fhi). Now the function f corresponds via (7.5) to the collection of functions
(f(·, hi))i. As ΦL(f) and Λ(ξ`(f)) descend to differential forms on XK , they are invariant
under the left-action of H(Q) and the right-action of K. Therefore, the equations (8.18) lift to
the corresponding equation (8.17) on XK . This equation holds for all (z, h) ∈ XK\

∑
i Z(fhi),

where
∑

i Z(fhi) is nothing else than the divisor Z(f) in (8.11) implying the claimed result.
�

The following theorem is a generalisation of Theorem 4.23 in [Br1] to meromorphic modular
forms on D ×H(Af ).
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Theorem 8.6. Assume that α(ΓK) is the discriminant kernel Γ(L). Let F : D×H(Af )→ C
be a meromorphic modular form of weight r, character χ and level K ⊂ H(Af ) with respect
to H(Q) whose divisor is of the form

(8.19) Div(F ) =
1

2

∑
µ∈L′/L

∑
n>0

c+(−n, µ)Z(n, µ).

Then there exists a weak Maass form f ∈ H+
`,L− with principal part

∑
µ∈L′/L

∑
n>0

c+(−n, µ)e(nτ)eµ

such that

(8.20) ΦL(f)(z, hi) = −2 log ‖F (z, hi)‖Pet, r
2

+ ci,

where (hi)i with hi ∈ H(Af ) is a set of coset representatives of the double coset space in (7.4)
and (ci)i is a set of constants.

Proof. Let (Fhi = F (·, hi))i be the collection of functions on D+ associated to F (as in (7.5))
with respect to the decomposition (7.4). By Remark 7.1, i), we have that α(Γi) = Γ(Lhi)
for all i. Taking this into account, the assumptions on F imply that Fhi (restricted to D+)
is a meromorphic modular form for the orthogonal group Γ(Lhi) in the sense of [Br1], p.
83. According to (8.12) and (8.13) the component of Div(F ) on Γi\D+ (identified with
Γ(Lhi)\D+) is given by

Zi(Fhi) =
1

2

∑
µ∈L′/L

∑
n>0

c+(−n, µ)Zi(n, µi).(8.21)

Note that H(Q)+ acts on Fhi by multiplication with the character χ. Thus, Zi(Fhi) may be
interpreted as divisor of Fhi (although Fhi is not a function on Γi\D+). Each component
function Fhi satisfies the assumptions of Theorem 4.23 in [Br1]. It follows from this theorem
that the regularized theta lift

(8.22) ΦL(z, hi) = −1

8

∑
µi∈L′/L

∑
n∈Z+Q(µ)

n>0

c+(−n, µ)Φµi,n(z)

satisfies the equation

(8.23) ΦL(z, hi) = log ‖Fhi(z)‖Pet, r
2

+ ci,

where ci is some constant. Here Φµi,n denotes the regularized theta lift of the Poincare-Maass
form of index (µi, n) (see [Br1], Def. 1.8). �

Theorem 8.7. Let m be the even rank of the lattice L satisfying m > max(6, 3 + r0) and
m ≡ 0 mod 4. Moreover, assume that the associated discriminant group A is anisotropic and
that α(ΓK) = Γ(L). Further, let F : D × H(Af ) → C be a meromorphic modular form of
weight r and level K ⊂ H(Af ) with respect to H(Q) whose divisor is a linear combination
of Heegner divisors Z(h, n) (as in (8.19)). Then there exists a weakly holomorphic modular
form f ∈M !

`,L− such that F is up to a constant multiple the Borcherds lift ΨL of f .

Proof. The proof is basically the same as in [BF], Corollary 1.7. From Theorem 8.6 we know
that there is a harmonic weak Maass form f ∈ H+

`,L− with

ΦL(f)(z, hi) = −2 log ‖F (z, hi)‖Pet, r
2

+ ci
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for some constant ci for all i. Applying the exterior derivative ddc on both sides yields

(8.24) ddcΦL(f)(z, hi) = −2ddc log ‖F (z, hi)‖Pet, r
2

= c+(0, 0)Ω

for all i. On the other hand, by Theorem 8.5 the identity (8.17) holds for all (z, h) ∈ XK\Z(f).
Comparing the equations (8.17) and (8.24), we may conclude that Λ(ξ`(f))(z, h) = 0 for all
(z, h). By the injectivity of the Kudla-Millson theta lift, Corollary 7.8, it follows ξ`(f) = 0.
The exactness of the sequence in (3.14) then implies f ∈M !

`,L− , giving the desired result. �

As a corollary we obtain

Corollary 8.8. Let m be the even rank of the lattice L satisfying m > max(6, 3+r0) and m ≡
0 mod 4. Moreover, let the associated discriminant form A be anisotropic and F : D+ → C be
a meromorphic modular form of weight r and character χ (of finite order) for the discriminant
kernel Γ(L) whose divisor is a linear combination of Heegner divisors. Then there exists a
weakly holomorphic modular form f ∈ M !

`,L− such that F is up to a constant multiple the

Borcherds lift ΨL of f .

Proof. In view of [Ni], Prop. 1.4.1, we may infer that L is maximal. Otherwise an overlattice
would lead to an isotropic subgroup of A, which is clearly a contradiction considering that
A is anisotropic. Let XK = H(Q)\D × H(Af )/K the GSpin Shimura variety as specified
in Remark 8.2. Then we know from this remark that XK

∼= Γ(L)\D+. This implies that
H(Af ) = H(Q)+K because otherwise XK could not be connected (see the proof of Lemma
5.13 in [Mi]). In this situation we can identify the modular forms in Definition 8.1 with
modular form for the orthogonal group Γ(L). Moreover, we get back the original Kudla-
Millson theta lift Λ(f)(z, 1) and the original Borcherds lift ΨL(f)(z, 1). The application of
Theorem 8.7 (for h = 1) then concludes the proof. �

9. Non-existence of reflective automorphic forms

In this section we apply the converse theorem Corollary 8.8 to refine a theorem of Schei-
thauer in [Sch] on the non-existence of reflective automorphic products. We first briefly recall
the necessary material to present our results. We use [Di] and [Sch] as main references and
keep the setting and notation of Section 8.

Definition 9.1. We say that a weakly holomorphic modular form f for ρA is symmetric if
σ(f) = f for all σ ∈ Aut(A). We can associate to any weakly holomorphic modular form f a
symmetric vector valued modular form of the same weight by

(9.1) fSym =
1

|Aut(A)|
∑

σ∈Aut(A)

σ(f).

fSym is called the symmetrization of f .

Based on this definition we explain the concept of a symmetric modular form for some
orthogonal group.

Definition 9.2. Let ΓL ≤ Γ(L) be a subgroup of finite index of the discriminant kernel. A
holomorphic modular form F of weight r ∈ Z and character χ for ΓL (as defined e. g. in
[Br1], p 8.3) is called

i) symmetric if it is the Borcherds lift of a symmetric weakly holomorphic modular form
in the sense of Definition 9.1.
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ii) reflective if all its zeros are located on divisors of the form λ⊥ where λ is a root in L.

Reflective modular forms can be obtained by applying the Borcherds lift to a vector valued
modular form of a certain shape. To phrase this relation, we introduce some subsets of the
discriminant group A: For c ∈ Z>0 and x ∈ Q we put

(9.2) Ac,x = {µ ∈ A | ord(µ) = c and Q(µ) = x+ Z} .
In terms of this subset we have

Proposition 9.3 ([Sch], Sect. 9, [Di], Prop. 3.18). Assume that L has square-free level and
let f be a modular form in M !

`,A satisfying:

i) For µ ∈ Al,1/l the Fourier expansion of fµ is given by fµ = c(µ, 1/l) + O(1) with
c(µ, 1/l) ∈ Z>0.

ii) fµ is holomorphic at ∞ for all other µ ∈ A.

Then the Borcherds lift ΨL(f) is a reflective orthogonal modular form.

Dittman proved the converse of Proposition 9.3 if L additionally splits a hyperbolic plane
U over Z.

Proposition 9.4. Let L be lattice of square-free level and suppose that L splits a hyperbolic
plane U . If the Borcherds lift ΨL(f) is reflective, then the vector valued modular form f ∈
M !
`,A satisfies:

i) For µ ∈ Al,1/l the Fourier expansion of fµ is given by fµ = c(µ, 1/l) + O(1) with
c(µ, 1/l) ∈ Z>0.

ii) fµ is holomorphic at ∞ for all other µ ∈ A.

At this point it is worth mentioning that in [Sch] Scheithauer refers to the vector valued
modular forms in Prop. 9.3 as reflective modular forms. Moreover, he calls a modular form
F for some orthogonal group ΓL as an reflective automorphic product if F is the Borcherds
lift of some vector valued modular as specified in Prop. 9.3. In terms of these definitions an
important assertion of [Sch] is given in the following theorem.

Theorem 9.5. The number of automorphic products of singular weight which are symmetric
and reflective on lattices of type (p, 2) with p > 2, square-free level and q-ranks at most p+ 1
is finite.

By means of the converse theorem of this paper, we are able to extend this to result to
reflective modular forms as given in Definition 9.2 without assuming that the underlying
lattice L splits a sublattice of the form U ⊕ U(N) over Z. Nevertheless, it is necessary that
the conditions of the converse theorem in Corollary 8.8 are satisfied.

We first note that the assumptions on the lattice L in this paper are sufficient to prove that
L splits a hyperbolic plane U over Z. Therefore, we may employ Prop. 9.4 for subsequent
arguments.

Lemma 9.6. Let L be non-degenerate even lattice of type (p, 2) with p ≥ 3 whose associated
discriminant group A = L′/L is anisotropic. Then L splits a hyperbolic plane over Z.

Proof. We first note that the level N of L is square-free as A is anisotropic and N is odd (see
e. g. [BEF], p. Lemma 4.9). In view of the type of L we clearly have an isotropic vector
z ∈ L, which we can choose to be primitive. It is well known (arguing the same way as in
the proof of Lemma 4.6 in [Eb]) that there is a vector z′ ∈ L′ associated to z with (z, z′) = 1.
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Dittmann shows in Prop. 2.73 that z′ can be chosen to be isotropic and to satisfy lz′ ∈ L
for some positive interger l dividing N . In particular, we have a decomposition of the form
L ∼= K⊕U(l), where K = L∩ z⊥∩w⊥ with w = lz′. It easily seen that U(l)′/U(l) ∼= (Z/lZ)2

and that this subgroup of A contains isotropic elements (c. f. [Di], Prop. 1.71). But this is
not possible as A is anisotropic. Hence, l must be equal to 1. In this case we have L ∼= K⊕U ,
giving the desired assertion. �

We are now in a position to state and proof the main result of this section.

Theorem 9.7. There are only finitely many lattices (up to isomorphism) that satisfy all
conditions of Corollary 8.8 and that admit a reflective modular form of singular weight for
Γ(L).

Proof. Let F be a reflective modular form of weight p
2 − 1 and character of finite order with

respect to the discriminant kernel Γ(L). By Corollary 8.8, there is a weakly modular form
f ∈M !

`,L− such that F is a constant multiple of ΨL(f). As F has singular weight, the Fourier

coefficient c(0, 0) is equal to p−2. By Lemma 9.6, we know that L splits a hyperbolic plane U .
Prop. 9.4 then implies that f is a reflective vector valued modular form. The symmetrization
of f is a symmetric and reflective (see (3.2) in [Di]). It is easily checked that the constant
coefficient of (fSym)0 is also equal to c(0, 0) = p− 2. Finally, by means of (2.2) it clear that
the q-rank of each q component of A is smaller than p + 1. Thus, fSym meets all conditions
of Thm. 11.1 in [Sch]. Then arguing the same way as in [Sch], Sect. 11 and 12, yields that
the rank and the level of L is bounded, which gives the claimed assertion. �
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