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THE FOURIER EXPANSION OF HECKE OPERATORS
FOR VECTOR-VALUED MODULAR FORMS

Oliver Stein

Abstract: We compute the Fourier expansion of Hecke operators on vector-valued modular
forms for the Weil representation associated to a lattice L. The Hecke operators considered
in this paper include operators T (p2l) where p is a prime dividing the level of the lattice L.
Additionally, an explicit formula for a general type of Gauss sum associated to a lattice L drops
out as a by-product.
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1. Introduction

Hecke operators are an important part of the theory of modular forms, see e.g.
[Sh1], [Sh2], [Sh3] or [EZ] and many other papers. They can be used to study
arithmetic properties of Fourier coefficients of a modular form and to exhibit re-
lations between them. To this end an explicit description of the action of Hecke
operators on the Fourier coefficients of a modular form is vital.

Borcherds discovered in [Bo1] a theta lift which maps vector-valued modular
forms for SL2(Z) to autormorphic forms on orthogonal groups. These vector-valued
modular forms transform with a certain representation of SL2(Z), the Weil repre-
sentation %L, which is associated to a lattice L. Since then vector-valued modular
forms of this type are the subject of many recently published papers, see e.g. [Bo2],
[Br],[BS], [Sc], [BO1] and [BO2].

The paper [BS] provides a foundation of a Hecke theory for vector-valued mod-
ular forms of type %L along the same lines as it is known for the classical elliptic
modular forms. Two cases are considered in the paper. The first one defines Hecke
operators T (n) where n is assumed to be coprime to the level N of the lattice L.
The definition of such a Hecke operator involves the extension of the Weil repre-
sentation to some subgroup of GL+

2 (Q). This extension depends fundamentally
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on the condition (n,N) = 1 and assumes further that n is a square modulo N .
Moreover, for modular forms of half-integral weight it turns out that T (n) is only
non trivial if n is a square number in the integers. One important result is the
explicit description of the action of T (n) on the Fourier expansion of a modular
form for a prime or a square of a prime.

The second case is a generalisation of the first one since the assumption
(n,N) = 1 is dropped. The results of the first case cannot be carried over to
the general one since the extension of %L relies essentially on the above mentioned
condition on n. Nevertheless, it is still possible to extend the Weil representation
to a suitable double coset and to define a Hecke operator by the action of such
a double coset. In contrast to the first case, a description of the action of T (n) on
the Fourier coefficients of a modular form is not given.

The present paper provides an explicit formula for the Fourier expansion of
the Hecke operator T (p2l) for an odd prime p and a positive integer l. Compared
to the paper [BS], there are no restrictions on the prime p except that it has to
be odd. Insofar, the paper at hand provides the missing action on the Fourier
expansion for the more general Hecke operator and a generalisation of the formula
for the action of T (p2) in the first mentioned case above.

We now describe the content of the paper in some more detail. Let (L, b(·, ·))
be an even non-degenerate lattice of type (b+, b−) where b(·, ·) denotes a bilinear
form on L with associated quadratic form x 7→ q(x). The number b+− b− is called
the signature of L. Let L′ be the dual lattice of L and L := L′/L the discriminant
group. The level of L is defined to be the smallest integer N such that Nq(x) ∈ Z
for all x ∈ L′. In order to keep the exposition in the introduction as simple as
possible we limit ourselves to the situation where the signature of L is even. In
the body of the paper the case of odd and even signature is treated. For even
signature the Weil representation is a representation %L of Γ(1) = SL2(Z) on the
group ring C[L] of the discriminant group,

%L : Γ(1) −→ C[L].

A modular form of weight k ∈ Z and type %L for Γ(1) is a holomorphic function
f : H −→ C[L] which satisfies

f(γτ) = (cτ + d)k%L(γ)f(τ)

for all γ =
(
a b
c d

)
∈ Γ(1) and which is holomorphic at the cusp ∞. A cusp form f

satisfies the usual additional condition with respect to the Fourier expansion of all
component functions fλ of f =

∑
λ∈L fλeλ. Here, {eλ}λ∈L denotes the standard

basis of C[L] considered as a vector space.
As already stated, this paper is mainly concerned with the calculation of the

Fourier expansion of f |k,L T (p2l) for any odd prime p and any positive integer l.
We now briefly sketch how T (p2l) can be defined (for details see [BS]) and outline
the steps necessary to obtain explicit formulas for the action of T (p2l) on Fourier
expansions. Let α =

(
p2l 0
0 1

)
∈ GL+

2 (Q). We define %L on α by

%−1
L (α)eλ = eplλ. (1.1)
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It can be proven that (1.1) can be extended to an action on the double coset
Γ(1)αΓ(1) by

%−1
L (β)eλ = %−1

L (γ′)%−1
L (α)%−1

L (γ)eλ (1.2)

where β = γαγ′ and γ, γ′ ∈ Γ(1). The Hecke operator T (p2l) is then defined in
the usual way by the action of the double coset Γ(1)αΓ(1).

f |k,L T (p2l) =p2l(k−2)
∑
i

∑
λ∈L

(fλ |k δi)%−1
L (δi)eλ (1.3)

where the δi ∈ GL+
2 (Q) form a set of left coset representatives of Γ(1)\Γ(1)αΓ(1).

In order to calculate the Fourier expansion of f |k,L T (p2l) it is at first necessary
to evaluate

%−1
L (δi)eλ

for all representatives δi according to the rule of (1.2). Theorem 5.2 provides
the corresponding formulas for %−1

L (δi)eλ. The proof of the theorem is based on
a formula of Shintani, [Shin], Prop. 1.6, and the formulas of the Weil representation
for the standard generators S and T of Γ(1). These formulas applied, lead to
considerably complicated expressions which are simplified to a “ready to compute”
formula in the course of the proof.

In Theorem 5.4 the Fourier expansion of f |k,L T (p2l) will then be computed.
As a corollary the corresponding formula for a prime p coprime to N is given. It
can be verified that the Fourier expansion for l = 1, proven in Theorem 4.10 of
[BS], can indeed be recovered by the formula in corollary 5.6. In Corollary 5.7
we show that the vector-valued Hecke operator T (p2) corresponds to the Hecke
operator Tp for Jacobi forms by comparing Fourier expansions.

In the course of calculating the expansion of f |k,L T (p2l) some general Gauss
sums

Gh,s(L) =
∑

v∈L/plL

e

(
h

pl
q(v)

)
(1.4)

occur. There is a separate section, section 4, in this paper which is devoted to
explicitly evaluate these Gauss sums. This evaluation is based on a diagonalization
of the quadratic form q on the (Z/plZ)-module L/plL which is similar to the
diagonalization over the p-adic integers in Theorem 2 in chapter 15 of [CS]. Gauss
sums of this type are not new and appear frequently in the literature. The papers
[Sc], [Sc1] and [Str] provide also explicit formulas for (1.4) based on the Jordan
decomposition of a quadratic module. However, these formulas seem not to be
immediately applicable to our needs and look not as simple as ours.

2. The Weil representation and vector-valued modular forms

In this section we recall some basic facts about the Weil representation and vector-
valued modular forms transforming with the Weil representation. We follow [BS]
and [Br].
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The group GL+
2 (R) = {M ∈ GL2(R); det(M) > 0} acts on the upper half-

plane H = {τ = x+ iy ∈ C; Im(τ) > 0} and on H ∪ R ∪ {∞}, respectively, by
linear fractional transformations. For z ∈ C let

√
z = z1/2 be the principal branch

of the square root, i. e. arg(
√
z) ∈ (−π/2, π/2]. For an integer k we put zk/2 =√

z
k. For M =

(
a b
c d

)
∈ GL+

2 (R) and τ ∈ H we define the automorphy factor

j(M, τ) =
√
cτ + d.

With G̃L
+

2 (R) we denote the metaplectic cover of GL+
2 (R), i. e. the group of

pairs (M,φ(τ)), where M ∈ GL+
2 (R) and φ(τ) = j(M, τ) or −j(M, τ). The group

multiplication is given by

(M1, φ1(τ))(M2, φ2(τ)) = (M1M2, φ1(M2τ)φ2(τ)).

Let G̃L
+

2 (R) → GL+
2 (R) be the projection on the first component. For any sub-

group Γ of GL+
2 (R) we write Γ̃ for the inverse image under the projection. In

particular, we put Γ̃(1) = S̃L2(Z). The group Γ̃(1) is generated by T = (( 1 1
0 1 ) , 1)

and S = (
(

0 −1
1 0

)
,
√
τ) satisfying the relations S2 = (ST )3 = Z where Z =

(
(−1 0

0 −1

)
, i).

Let (L, b(·, ·)) be a non-degenerate even lattice of type (b+, b−), where b(·, ·)
denotes a bilinear form on L with associated quadratic form x 7→ q(x) = 1

2b(x, x).
Further, let sig(L) = b+ − b− be the signature of L. We define the dual lattice L′
of L to be

L′ = {x ∈ L⊗Q : b(x, y) ∈ Z for all y ∈ L} .

Since L is even we have that L is a subgroup of L′ and

L := L′/L

is a finite abelian group. The mod 1 reduction of b(·, ·) is a Q/Z-valued bilinear
form on L. The associated quadratic form is the mod 1 reduction of the quadratic
form x 7→ q(x) on L′. For n ∈ N we define the subgroups

Ln = {µ ∈ L : ∃ν ∈ L µ = nν} ,
Ln = {µ ∈ L : nµ = 0}

and the subset

Ln∗ =
{
µ ∈ L : (µ, ν) ≡ nν2/2 (mod 1) for all ν ∈ (L′/L)n

}
of L. These subgroups are connected by the following exact sequence

0 −→ Ln −→ L −→ Ln −→ 0, (2.1)

where the second map is an embedding and the third one the multiplication with n.
Furthermore, we denote with L(n) and L′(n) the lattice L and L′ respectively
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equipped with the scaled bilinear form nb(·, ·) and accordingly the scaled quadratic
form nq(·). For the rest of the paper we will use the following notation

L(n) := L′(n)/L(n).

Note that one can prove that Ln∗ = Ln, if n is an odd integer (see e.g.
[Bo2], p. 324).

There is a unitary representation %L of Γ̃(1) on the group algebra C[L] which
will be described now: Let {eλ}λ∈L be the standard basis of C[L] as a C-vector
space and e(x) = e2πix. It is sufficient to define the representation on the genera-
tors S and T :

%L(T )(eλ) = e(q(λ))eλ, (2.2)

%L(S)(eλ) =
e(− sig(L)/8)√

|L|

∑
µ∈L

e(−b(λ, µ))eµ. (2.3)

The representation on Z is given by

%L(Z)(eλ) = e(− sig(L)/4)e−λ. (2.4)

It can be verified that the formulas (2.3) and (2.2) satisfy the above mentioned
relations of S and T which proves that they indeed define a representation on Γ̃(1),
the Weil representation.

We have Z2 = (( 1 0
0 1 ) ,−1) and %L(Z2)(eλ) = (−1)sig(L)eλ. Therefore, if the

signature of L is even, the Weil representation factors through Γ(1). Let N be the
level of the lattice L, i. e. the smallest positive integer N such that Nq(x) ∈ Z for
all x ∈ L′. It is well known that the Weil representation is trivial on the principal
congruence subgroup Γ(N) (see [Eb], Theorem 3.2). It follows that %L factors
through the finite group

Γ(1)/Γ(N) ∼= SL2(Z/NZ). (2.5)

If the signature sig(L) is odd, one can show that 4 divides the level N of the lattice.
In this case the Weil representation is trivial on the group Γ(N)∗ = {(γ, J(γ, τ)) :

γ ∈ Γ(N)} ⊂ Γ̃(1) where J(
(
a b
c d

)
, τ) =

(
c
d

)
j(
(
a b
c d

)
, τ) is the theta multiplier. It

follows that %L factors through the finite quotient

Γ̃(1)/Γ(N)∗, (2.6)

see [BS], p. 253.
The following proposition provides an explicit formula for the Weil representa-

tion on lower triangular matrices of Γ̃(1). A proof can be found in [BS], Lemma 2.3.

Proposition 2.1. Let U = (( 1 0
1 1 ) ,

√
τ + 1) ∈ Γ̃(1). The Weil representation of

Um is given by

%L(Um)eλ =
1

|L|
∑
µ,ν∈L

e(−mq(µ) + b(µ, λ− ν))eν .
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We now define vector-valued modular forms of type %L. With respect to the
standard basis of C[L] a function f : H→ C[L] can be written in the form

f(τ) =
∑
λ∈L

fλ(τ)eλ.

The following operator generalises the usual Petersson slash operator to the space
of all those functions. For k ∈ 1

2Z we define

f |k,L (γ, φ) = φ(γ, τ)−2k%L(γ, φ)−1f(γτ). (2.7)

A holomorphic function f : H → C[L] is called a modular form of weight k and
type %L for Γ̃(1) if f |k,L (γ, φ) = f for all (γ, φ) ∈ Γ̃(1), and if f is holomorphic at
the cusp∞. Here the last condition means that all Fourier coefficients c(λ, n) with
n < 0 vanish. If in addition c(λ, n) = 0 for all n = 0, we call the corresponding
modular form a cusp form. We denote by Mk,L the space of all such modular
forms, by Sk,L the subspace of cusp forms. For more details see e.g. [Br] or [BS].
Note that formula (2.4) implies that Mk,L = {0} unless

2k ≡ sig(L) (mod 2). (2.8)

Therefore, if the signature of L is even, only non-trivial spaces of integral weight
can occur, if the signature of L is odd only non-trivial spaces of half-integral weight
can occur. The Petersson scalar product on Sk,L is given by

(f, g) =

∫
Γ(1)\H

〈f(τ), g(τ)〉 Im τkdµ(τ) (2.9)

where

dµ(τ) =
dx dy

y2

denotes the hyperbolic volume element and〈∑
λ∈L

aλeλ,
∑
λ∈L

bλeλ

〉
=
∑
λ∈L

aλbλ (2.10)

is the standard scalar product on the group ring C[L].

3. Hecke operators on vector-valued modular forms

In this section we briefly recall how Hecke operators on vector-valued modular
forms can be defined. All details can be found in [BS]. An alternative approach
leading to the same Hecke operator is described in [St]. As usual, Hecke operators
will be defined by the action of a suitable Hecke algebra.



The Fourier expansion of Hecke operators for vector-valued modular forms 235

3.1. The case of even signature

In order to define Hecke operators on Mk,L one has to extend the Petersson slash
operator in (2.7) to some suitable group which is isomorphic to a subgroup of
GL+

2 (Q). In particular, this means that the Weil representation has to be ex-
tended to this group. As a starting point the Weil representation, viewed as a
representation of the finite group S(N) := Γ(1)/Γ(N),

%L(A)eλ = %L(s(A))eλ, A ∈ S(N), (3.1)

can be extended to a group isomorphic to a subgroup of GL2(Z/NZ). Here
s : S(N) → Γ(1) is a section, that is πN ◦ s = idS(N), where πN denotes the
component-wise reduction modulo N . Let Q(N) be the group

Q(N) = {(M, r) ∈ GL2(Z/NZ)× (Z/NZ)∗ : det(M) ≡ r2 (mod N)}

with the product defined component-wise. By M 7→ (M, 1) the group S(N)
can be embedded into Q(N). Moreover, for (M, r) ∈ Q(N) the map (M, r) 7→
(M ( r 0

0 r )
−1
, r) defines an isomorphism Q(N) ∼= S(N)× (Z/NZ)∗. Then the Weil

representation of (Z/NZ)∗ can be defined as follows

%L

((
r 0
0 r

)
, r

)
eλ =

g1(L)

gr(L)
eλ (3.2)

and on the whole group Q(N) by

%L(M, r)eλ = %L(M ( r 0
0 r )

−1
, 1) ◦ %L(( r 0

0 r ) , r)eλ. (3.3)

Here, gr(L) is a Gauss sum defined by

gr(L) =
∑
λ∈L

e(rq(λ)).

Since the assignment r 7→ g1(L)
gr(L) defines a character of (Z/NZ)∗ (see [BS], p. 256)

we have that (3.2) is indeed a representation. It is easily seen that (3.3) extends
the Weil representation to a representation of Q(N). Consider the groups

G(N) =
{
M ∈ GL+

2 (Q) : ∃n ∈ Z with (n,N) = 1 such that nM ∈M2(Z)

and (det(nM), N) = 1}
(3.4)

and

Q(N) =
{

(M, r) ∈ G(N)× (Z/NZ)∗ : det(M) ≡ r2 (mod N)
}
. (3.5)

The modular group Γ(1) can be embedded into Q(N) by γ 7→ (γ, 1). The com-
ponent-wise reduction πN maps the group Q(N) onto the group Q(N). Therefore,
the Weil representation can be extended to the group Q(N) by

%L : Q(N) −→ GL(C[L]), (M, r) 7→ %L(πN (M), r), (3.6)
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where %L on Q(N) is defined by (3.3). The action of Q(N) on vector-valued
functions is then given by

f |k,L (M, r) =
∑
λ∈L

(fλ |k M)%−1
L (M, r)eλ (3.7)

where f =
∑
λ∈L fλeλ and

f |k M = φ(M, τ)−2kf(Mτ) (3.8)

is the usual Petersson slash operator. It is easily seen that (3.7) extends the action
(2.7) of Γ(1) to the group Q(N).

3.2. The case of odd signature

If the signature of L is odd, it suffices to consider vector-valued modular forms
of half-integral weight. In this case (3.8) and (3.6) define only projective actions
of the group Q(N). In order to obtain honest actions one needs to introduce
appropriate central extensions of Q(N). First we consider the action on C[L]. As
already mentioned (3.6) yields only a projective representation, that is

%L : Q(N) −→ GL(C[L])/{±1}, g 7→ %L(g).

Choosing a section s : GL(C[L])/{±1} → GL(C[L]) gives rise to a cocycle c :
Q(N)×Q(N)→ {±1} and a central group extension

Q1(N) = Q(N)× {±1}.

By setting
%L(M, r, t) = t%L(M, r)

for (M, r, t) ∈ Q1(N) we obtain a representation of Q1(N). For (γ, 1) ∈ Γ(1) ×
{1} ⊂ Q(N) we set

%L(γ, 1) = %L(γ, j(γ, τ)). (3.9)

This choice of s yields an injective homomorphism of Γ̃(1) into Q1(N)

Γ̃(1) −→ Q1(N), (γ,±j(γ, τ)) 7→ (γ, 1,±1). (3.10)

Moreover, we set

%L

((
m2 0
0 1

)
,m

)
eλ = em−1λ. (3.11)

On the other hand, if the weight k ∈ Z + 1
2 the action (3.8) defines a cocyle

which is determined by the square root of the automorphic factor. One can show
that this cocyle is not cohomologous to the cocycle c on the group Q(N). However,
the choice (3.9) shows that they are identical on the group Γ̃(1) and by a different
choice of s cohomologous.
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Therefore, in order to define an action on vector-valued functions one has to
define a twofold central group extension

Q2(N) = {(M,φ(M, τ), r, t) : M ∈ G(N), r ∈ (Z/NZ)∗,

det(M) ≡ r2 mod N, t ∈ {±1}
} (3.12)

of Q(N) by {±1}. Because of (3.10) there is an injective homomorphism

L : Γ̃(1) −→ Q2(N), (γ,±j(γ, τ)) 7→ (γ,±j(γ, τ), 1,±1). (3.13)

For an element (M,φ(M, τ), r, t) ∈ Q2(N) we set

%L(M,φ(M, τ), r, t) = %L(M, r, t),

that is, we compose the projection to the groupQ1(N) with theWeil representation
on that group. By the definition of the embedding L we have

%L(L(γ)) = %L(γ) (3.14)

for γ ∈ Γ̃(1). Note that the Weil representation of Q(N) and Q2(N) is unitary
with respect to the scalar product (2.10). The action of Q2(N) on vector-valued
functions f =

∑
λ∈L fλeλ is given by

f |k,L (M,φ(M, τ), r, t) =
∑
λ∈L

(fλ |k (M,φ))%−1
L (M, r, t)eλ, (3.15)

where f |k (M,φ) is defined as in (3.8).

3.3. Hecke Operators

Let n ∈ N be coprime to the level N of L. The Hecke operator T (n) will be
defined in terms of the action of the Hecke algebra given by the pair of groups
(Q(N),Γ(1)× {1}) or (Q2(N), L(Γ̃(1))) depending on the parity of the signature
of the lattice L. The definition of the group Q(N) implies that we have to assume
that n is a square modulo N . Further, if the signature of L is odd one can show
that T (n) is zero unless n is a square in Z, see [BS], Prop. 4.9. Therefore, we
assume that (n,N) = 1 and

n ≡ r2 mod N, if sig(L) is even,

n = m2, if sig(L) is odd.
(3.16)

In order to keep the notation as simple as possible and to treat the cases of odd
and even signature in the following definition simultaneously we introduce the
following notation:

Γ =

{
Γ(1)× {1} ⊂ Γ(1)× (Z/NZ)∗, if sig(L) even,
L(Γ̃(1)), if sig(L) odd,

(3.17)
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where L denotes the embedding (3.13) and accordingly

M(n) =

{
Γ(( n 0

0 1 ) , r)Γ, if sig(L) even,
Γ(( n 0

0 1 ) , 1,m, 1)Γ, if sig(L) odd.
(3.18)

As usual, the Hecke operator is then defined by

f |k,L T (n) = nk/2−1
∑

M̃∈Γ\M(n)

f |k,L M̃, (3.19)

where the slash operator is given by (3.7) and (3.15) depending on the parity of
the signature of L.

3.4. Generalized Hecke operators

In this section we recall from [BS], section 5, the definition of Hecke operators T (n)
for all n ∈ N, in particular for (n,N) > 1. In the latter case we need to define an
extension for the Weil representation to matrices M ∈M2(Z) with (det(M), N) >
1, since the reduction of M modulo N does not belong to GL2(Z/NZ). We use
for the rest of this section the following notation

eλ |L M = %−1
L (M)eλ (3.20)

to define a right action of the double coset Γ̃(1)
((

n2 0
0 1

))
Γ̃(1). In consistency with

the definition of the Weil representation for (n,N) = 1 we set

eλ |L
((

n2 0
0 1

)
, 1
)

= enλ, (3.21)

and use in the following the abbreviation

α =
((

n2 0
0 1

)
, 1
)
∈ G̃L

+

2 (Q)

(see [BS], (5.1)). The action (3.21) can be extended to the double coset Γ̃(1)αΓ̃(1)
in the following way

eλ |L δ = eλ |L γ |L α |L γ′ (3.22)

for δ = γαγ′ ∈ Γ̃(1)αΓ̃(1). One can show that (3.22) is independent of the
decomposition of δ, see [BS], Proposition 5.1, and moreover, indeed defines an
action on Γ̃(1)αΓ̃(1), see [BS], Proposition 5.4.

Using (3.21) and (3.22) it is possible to define Hecke operators for all n ∈ N.

Definition 3.1. Let n be a positive integer and α =
((

n2 0
0 1

)
, 1
)
∈ G̃L

+

2 (Q). Let

Γ̃(1) · α · Γ̃(1) =
⋃
i

Γ̃(1) · δi
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be a disjoint left coset decomposition. We define the Hecke operator T (n2) on
modular forms f ∈Mk,L by

f 7→ f |k,L T (n2) = nk−2
∑
i

f |k,L δi = nk−2
∑
i

∑
λ∈L

(
fλ |k δi

)(
eλ |L δi

)
. (3.23)

Note that definition 3.1 generalises the one for the case (n,N) = 1.
The following theorem is proved in [BS], Theorem 5.6.

Theorem 3.2. Let m,n ∈ N be coprime. Then the Hecke operator T (n2) is
a linear operator on Mk,L taking cusp forms to cusp forms. It is self-adjoint with
respect to the Petersson scalar product (2.9). Moreover,

T (m2)T (n2) = T (m2n2).

4. Gauss sums

In this section we present explicit formulas for some Gauss sums which appear
during the calculation of the Fourier expansion of the above defined Hecke op-
erators. Some of these formulas may be known to the expert, others appear in
a different form in the literature. For reasons of completeness and because these
formulas could be interesting in its own right we provide them here. For the rest
of the paper we denote for any prime p by vp the p-adic valuation on Q.

Lemma 4.1. Let p be an odd prime, χp the character defined by the Legendre
symbol

(
·
p

)
and χ the trivial character. Then for m, s ∈ Z with s > 0,

g(ps, χp,m) :=
∑

h∈Z/psZ

χp(h)e(
hm

ps
) =

{
ps−1√pεp

(
m/ps−1

p

)
, if vp(m) = s− 1,

0, otherwise,
(4.1)

and

g(ps, χ,m) :=
∑

h∈Z/psZ

χ(h)e(
hm

ps
) =


ps − ps−1, if ps | m,
−ps−1, if vp(m) = s− 1,
0 otherwise.

(4.2)

Proof. In the first case∑
h∈Z/psZ

χp(h)e(
hm

ps
) =

∑
h′∈Z/pZ

χp(h
′)e(

h′m

ps
)

∑
h′′∈Z/ps−1Z

e(
h′′m

ps−1
)

=

{
ps−1

∑
h′∈Z/pZ χ(h′)pe(

h′m
ps ) if ps−1 | m

0 otherwise .

Here, we have used, that h = h′ + ph′′ runs exactly once through a complete set
of representatives of Z/psZ if h′ runs exactly once through Z/pZ and h′′ through
Z/ps−1Z.

The second identity can be found in [BE], (1.6.4). �
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Lemma 4.2. Let p be an odd prime, h coprime to p and r, s ∈ Z>0 with r > s.
Then ∑

x∈Z/prZ

e

(
h

ps
x2

)
= pr−s

(
h

ps

)
εps
√
ps (4.3)

where

εm =

{
1 m ≡ 1 (mod 4),

i m ≡ 3 (mod 4)

for m ∈ Z>0.

Proof. It is easy to verify that if x runs once through a complete set of repre-
sentatives of Z/psZ and y through a complete set of representatives of Z/pr−sZ
then x+ psy runs exactly one time through a set of representatives of Z/prZ. By
means of this representation and the Theorem 1.52 of [BE] the result follows. �

For a module M we mean by M = M1 ⊥ M2 that M is the direct sum of the
submodules M1 and M2 and that b(M1,M2) = 0, where b is a bilinear form on M .

Lemma 4.3. Let L be a lattice, b : L×L→ Z a non-degenerate, integral and even
bilinear form, let p be an odd prime and l ∈ Z>1. Then the following statements
hold:

(a) The Z/plZ-module L/plL can be decomposed into Z/plZ-sub modules

L/plL = L1 ⊥ L2 ⊥ · · · ⊥ Lr ⊥M (4.4)

where Li = (Z/plZ)ui is one-dimensional with b(ui, ui) ∈ (Z/plZ)∗ for all i
and b(M,M) ⊂ (Z/plZ) \ (Z/plZ)∗.

(b) The submodule M in the orthogonal decomposition (4.4) allows itself the
following orthogonal decomposition in the above defined sense

M = M1 ⊥M2 ⊥ · · · ⊥Ms ⊥ N (4.5)

where Mj = (Z/plZ)vj with b(vj , vj) ∈ pk(Z/plZ)∗, k ∈ {1, . . . l − 1} and
b(N,N) ≡ 0 mod pl

Proof. (a) Let B := {b1, . . . , bD} be a basis of L. Then

{x1b1 + · · ·xDbD : xi ∈ Z/plZ}

is a set of representatives of L/plL, and B is also a basis of the Z/plZ-module
L/plL. Since Z/plZ is a local ring the Theorem 4.1 of [KS] can be applied which
gives immediately the desired result.

(b) The proof is basically the same as in the case of a vector space, see e.g.
Theorem 1.20 of [KS]. A similar proof for p-adic integers in terms of the Gram
matrix can be found in chapter 15, Theorem 2, of [CS].
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We proceed by induction on the dimension of M . If b(M,M) ≡ 0 mod pl then
nothing is to prove (set N := M). Otherwise, since 2 ∈ (Z/plZ)∗, there exists
a vector v ∈M with b(v, v) 6= 0. SinceM is finite we can choose v to have minimal
p-adic valuation vp(b(v, v)). We can assume that vp(b(v, v)) 6 vp(b(v, w)) for all
w ∈ M . For, if there exists a w ∈ M with 0 6= vp(b(v, w)) < vp(b(v, v)), it can be
easily shown that for the element v+w we have vp(b(v+w, v+w)) = vp(b(v, w)).
Now, define M1 := (Z/plZ)v, where v is chosen as above. It remains to prove
that M can be written as a direct sum of M1 and M⊥1 . Let m ∈ M . Clearly,
m = av + (m− av) for any a ∈ Z/plZ. We need to determine an a ∈ Z/plZ such
that m− av ∈M⊥1 . It suffices to choose a to satisfy the condition

b(v,m− av) = b(v,m)− ab(v, v) = 0.

This equation can be solved by

a = pvp(b(v,m))−vp(b(v,v))b∗(v,m)(b∗(v, v))−1 (4.6)

where b∗(v,m) and b∗(v, v) is the part of b(v,m) and b(v, v) respectively which is
coprime to p. Note that a is a well defined element of Z/plZ by the choice of v.
If we apply the above explained algorithm to the vectors of the basis B we indeed
obtain a direct orthogonal decomposition as claimed (v is chosen to be some bj or
bj + bi and the orthogonal complement is then build up by the vectors bk − akbj
where ak is formed as in (4.6) and so forth). �

Remark 4.4. A well known decomposition of finite Z-modules is the Jordan
decomposition. This decomposition assumes that the bilinear form on the module
is non-degenerate, see e.g. [Sc1]. Although we assume that b is non-degenerate
on the lattice L it is not clear (to me) that same holds for L/plL. However,
it was pointed out to me by the referee that L/plL, viewed as a discriminant
form, can be described by non-degenerate discriminant forms which in turn can be
decomposed into Jordan blocks. Using this fact, our results of this section could
also be obtained by the Scheithauers results in [Sc1] and [Sc2].

Lemma 4.5. Let p be an odd prime, h ∈ Z coprime to p and l ∈ Z with l > 0.
Let L be a non-degenerate even lattice of dimension D and {v1, . . . , vD} a basis
of the (Z/plZ)− module L/plL for which L/plL decomposes into one dimensional
sub modules as described in (4.4) and (4.5). Then

(a)

∑
v∈L/plL

e

(
h

pl
q(v)

)
=

l−1∏
k=0

(
h

pl−k

)nk ∑
v∈L/plL

e

(
1

pl
q(v)

)
(4.7)

and
(b)

∑
v∈L/plL

e

(
1

pl
q(v)

)
= plnl

l−1∏
k=0

(
pkεpl−k

√
pl−k

)nk nk∏
i=1

(
b∗(vi, vi)/2

pl−k

)
(4.8)
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where nk is the number of integers b(vi, vi), i = 1, . . . , d with vp(b(vi, vi)) = k and
b∗(vi, vi) is defined as in the proof of Lemma 4.3. The second product in (4.8)
runs over all vectors vi with vp(b(vi, vi)) = k.

Proof. (a) In view of the orthogonal decompositions (4.4) and (4.5) and Lemma 4.2
we obtain for the Gauss sum

∑
v∈L/plL

e

(
h

pl
q(v)

)
=

∑
(xi)∈(Z/plZ)D

e

(
h

pl

(
D∑
i=1

x2
i (b(vi, vi)/2)

))

=

D∏
i=1

 ∑
x∈Z/plZ

e

(
h(pvp(b(vi,vi))b∗(vi, vi)/2)x2

pl

)
=

l−1∏
k=0

(
h

pl−k

)nk ∑
v∈L/plL

e

(
1

pl
q(v)

)
(4.9)

where
nk = |{b(vi, vi), i = 1, . . . , D : vp(b(vi, vi)) = k}|.

(b) Starting with the second expression of (4.9) we obtain

plnl
D−nl∏
i=1

 ∑
x∈Z/plZ

e

(
(b∗(vi, vi)/2)x2

pl−vp(b(vi,vi))

)
= plnl

l−1∏
k=0

(
pkεpl−k

√
pl−k

)nk nk∏
i=1

(
b∗(vi, vi)/2

pl−k

) (4.10)

where we have used Lemma 4.2 to evaluate the quadratic Gauss sums on the
left-hand side of (4.10). �

Remark 4.6. I have written a PARI/GP-program to evaluate the formula (4.8)
including the diagonalization of the Gram-matrix of the lattice L in the sense of
Lemma 4.3.

Corollary 4.7. Let L, p, l, h and D as in Lemma 4.5. Further, assume that p is
coprime to the level N of the lattice L. Then

∑
v∈L/plL

e

(
h

pl
q(v)

)
=

((
h

pl

)
εpl
√
pl
)D D∏

i=1

(
b(vi, vi)/2

pl

)
(4.11)

=

((
h

pl

)
εpl
√
pl
)D (

(−1)b
− |L|

pl

)(
2

pl

)D
. (4.12)

Proof. It is well known that each prime dividing N also divides the determinant
det(L) of the Gram-matrix, see [Bu], p. 12. Therefore, all diagonal entries b(vi, vi)
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of the Gram-matrix with respect to an orthogonal decomposition in the sense of
Lemma 4.3 are coprime to p, since det(L) ≡

∏D
i=1 b(vi, vi) (mod pl). It follows

that n0 = D and nk = 0 for all k = 1, . . . , l. The formulas (4.7) and (4.8) with
these values for nk lead to the desired result. �

5. Computation of the Fourier expansion

5.1. The Fourier expansion of T (p2l)

Let p be an odd prime. We now want to compute the Fourier expansion of T (p2l).

Denote with α ∈ G̃L
+

2 (Q) the matrix
((

p2l 0
0 1

)
, 1
)
, with βh,s the matrix((

p2l−s h
0 ps

)
,
√
ps
)
and with γb the matrix

((
1 b
0 p2l

)
, pl
)
.

It is well known that a decomposition of Γ̃(1)αΓ̃(1) into left cosets is given by

Γ̃(1)αΓ̃(1) = Γ̃(1)α ∪
2l−1⋃
s=1

⋃
h∈(Z/psZ)∗

Γ̃(1)βh,s ∪
⋃

b∈Z/p2lZ

Γ̃(1)γb. (5.1)

Proposition 5.1. Let p be an odd prime, l a positive integer and b ∈ Z/p2lZ.
Then the action of γb in the Weil representation can be computed by

eλ |L γb =
∑
ν∈L
plν=λ

e(−bq(ν))eν . (5.2)

Proof. The proof for the case l = 1 can be found within the proof of The-
orem 14.2.9, p. 106, in [St]. The proof for l > 1 carries over immediately. �

Theorem 5.2. Let p be an odd prime, s, l positive integers with s < 2l and
h ∈ (Z/psZ)∗. Further, let D = dim(L) and Gh,s(L) =

∑
v∈L/psL e(−

h
ps q(v)).

Then

eλ |L βh,s =



δ(λ, s)p−sD/2e
(
− h
ps q(λ)

)
Gh,s(L)epl−sλ, if l > s,

δ(λ, l)|Lps−l |−1p−sD/2e
(
h
ps q(λ)

)
Gh,s(L)

×
∑
ρ∈L

ps−lρ=λ

e
(
b
(
−ρ, hλ

pl

))
eρ, if l < s,

(5.3)

where δ(λ, x) is 1 if λ ∈ Lpx and 0 otherwise.

Remark 5.3. Let m be min(s, l). If λ ∈ Lpm then 1
ps q(λ) = p2m−sq(λ/pm) and

pl−sb(λ, ν) = pl+m−sb(λ/pm, ν) are well defined elements of Q/Z. Therefore, the
formulas of Theorem 5.2 are well defined.
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Proof. The decomposition

βh,s =

((
r h
t ps

)
,
√
tτ + ps

)
α

((
1 0

−p2l−st 1

)
,
√
−p2l−stτ + 1

)
,

where rps−ht = 1, can easily be verified. We can choose t to be positive. According
to (3.22)

eλ |L βh,s = eλ |L
((

r h
t ps

)
,
√
tτ + ps

)
|L α |L U−p

2l−st. (5.4)

For the computation of eλ |L
((

r h
t ps

)
,
√
tτ + ps

)
we use Shintanis’ formula, [Shin],

Prop. 1.6.,

eλ |L (
(
r h
t ps

)
,
√
tτ + ps) =

e(− sig(L)/8)sign(−t)

|t|D/2
√
|L|

×
∑
µ∈L

∑
u∈L/tL

e

(
−psb(µ+ u, µ+ u) + 2b(µ+ u, λ)− rb(λ, λ)

2t

)
eµ.

(5.5)

Using the equation psr = 1 + ht the sum over u can be simplified:

∑
u∈L/tL

e

(
−psb(µ+ u, µ+ u) + 2b(µ+ u, λ)− rb(λ, λ)

2t

)

= e(−hb(µ, λ) + hrq(λ))
∑

u∈L/tL

e

(
−psb(µ− rλ+ u, µ− rλ+ u)

2t

)
, (5.6)

as can be checked by a straightforward calculation. It is more convenient to replace
the latter sum in (5.6) with a sum over the discriminant group L. Theorem 5.5 of
[Sc2] gives

∑
r∈L/cL

e

(
−b(α+ r, α+ r)

2c

)
= e(− sig(L)/8)

cdim(L)/2√
|L|

∑
β∈L

e(cq(β) + b(α, β)),

(5.7)

where α ∈ L and c is a positive integer. Note that in order to apply formula (5.7)
to the sum on the right-hand side of (5.6) one has to use the scaled quadratic form
λ 7→ psq(λ). We obtain

∑
u∈L/tL

e

(
−psb(µ+ u, µ+ u) + 2b(µ+ t, λ)− rb(λ, λ)

2t

)

=
tD/2e(− sig(L(ps))/8)√

|L(ps)|
e(−hb(µ, λ) + hrq(λ))

∑
δ∈L(ps)

e(pstq(δ) + psb(µ− rλ, δ)).

(5.8)
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With the help of (3.21) and Proposition 2.1 we find for the action of βh,s

e(hrq(λ))√
|L||L|

√
|L(ps)|

∑
ρ∈L

∑
ν∈L

e(−p2l−stq(ν) + b(ν,−ρ))

×
∑

δ∈L(ps)

e(pstq(δ) + psb(δ,−rλ))
∑
µ∈L

e(b(µ,−hλ+ psδ + plν))eρ

=
e(hrq(λ))√
|L|
√
|L(ps)|

∑
ρ∈L

∑
ν∈L

e(−p2l−stq(ν) + b(ν,−ρ))

×
∑

δ∈L(ps)

psδ=hλ−plν (mod L)

e(pstq(δ) + psb(δ,−rλ))eρ

(5.9)

where we used for the last equation the orthogonality relations of the character
µ 7→ e(b(µ, µ′)). Since L(ps)′ = 1

psL
′ and 1

psL
′/L ∼= L′/psL the last sum of (5.9)

can be written as

∑
ε∈L′/psL

ε=hλ−plν (mod L)

e

(
pstq(

1

ps
ε) + b(ε,−rλ)

)
. (5.10)

Because of the isomorphism (L′/psL)/(L/psL) ∼= L the solution of the equation
ε = hλ− plν (mod L) is given by hλ− plν +L/psL. Therefore, the sum in (5.10)
reads as follows

∑
v∈L/psL

e

(
pstq(

1

ps
(v + hλ− plν)) + b(v + hλ− plν,−rλ)

)

= e(b(hλ− plν,−rλ))
∑

v∈L/psL

e

(
t

ps
q(v + hλ− plν)

)
. (5.11)

The Lemma 5.2.1 of [Ba] and Proposition 3.8 of [Sc1] combined with Theorem 5.5
of [Sc2] imply that

∑
v∈L/psL

e

(
t

ps
q(v + hλ− plν)

)
6= 0

⇐⇒ hλ− plν ∈ Lp
s

⇐⇒ λ ∈ Lp
m

and hλ/pm − pl−mν ∈ Lp
s−m

, m = min(l, s).

(5.12)

Note that hλ ∈ Lpm if and only if λ ∈ Lpm , which follows from the identity
thλ = (rps − 1)λ. Moreover, if m = s, the last condition of (5.12) simplifies to
λ ∈ Lps .
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If hλ− plν ∈ Lps , the Gauss sum in (5.12) can be written as

e

(
t

ps
q(hλ− plν)

) ∑
v∈L/psL

e

(
t

ps
q(v)

)

= e

(
t

ps
(h2q(λ)− hplb(λ, ν) + p2lq(ν))

) ∑
v∈L/psL

e

(
− h

ps
q(v)

)
. (5.13)

Replacing the sum over δ in (5.9) with the expressions of (5.11) and (5.13) respec-
tively yields for l > s

δ(λ, s)e(− h
ps q(λ))Gh,s(L)√

|L|
√
|L(ps)|

∑
ρ∈L

∑
ν∈L

e(b(ν, pl−sλ− ρ))eρ

= p−sD/2δ(λ, s)e

(
− h

ps
q(λ)

)
Gh,s(L)epl−sλ. (5.14)

Similarly, for l < s, because of the slightly more complicated conditions in (5.12),
we obtain

δ(λ, l)Gh,s(L)e(− h
ps q(λ))√

|L|
√
|L(ps)|

∑
ρ∈L

∑
ν∈L

hλ/pl−ν∈Lp
s−l

e(b(p2l−sλ/pl − ρ, ν))eρ

=
δ(λ, l)Gh,s(L)e(− h

ps q(λ))√
|L|
√
|L(ps)|

∑
ρ∈L

e(b(p2l−sλ/pl − ρ, hλ/pl))

×
∑

ν′∈Lps−l
e(b(ν′, p2l−sλ/pl − ρ))eρ.

By the orthogonality relations of the character ν′ 7→ e(b(ν′, p2l−sλ/pl − ρ)) the
sum over ν′ is |Lps−l |, if p2l−sλ/pl − ρ ∈ Lps−l and 0 otherwise. The condition
p2l−sλ/pl − ρ ∈ Lps−l is equivalent to ps−lρ = λ, which leads to the desired
expression

δ(λ, l)Gh,s(L)|Lps−l |e( hps q(λ))√
|L|
√
|L(ps)|

∑
ρ∈L

ps−lρ=λ

e(b(−ρ, hλ/pl))eρ. �

Theorem 5.4. Let p be an odd prime, l a positive integer and f ∈ Mk,L with
k ∈ 1

2Z and the Fourier expansion

f(τ) =
∑
λ∈L

∑
n∈Z+q(λ)
n>0

c(λ, n)e(nτ)eλ.

Further, let Gs(L) be the Gauss sum
∑
v∈L/psL e(

1
ps q(v)), D = dim(L) and write

K1(L, s) = p(2k−2)lp−sD/2p−skGs(L)
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and
K2(L, s) = p(2k−2)lp−sD/2p−skGs(L)|Ls−l|−1.

Then

f |k,L T (p2l) =
∑
λ∈L

∑
n∈Z+q(λ)
n>0

b(λ, n)e(nτ)eλ,

where

b(λ, n) = δ(λ, l)
∑

λ′∈L
pl

n−p2lq(λ/pl+λ′)∈p2lZ

c

(
λ/pl + λ′,

n− p2lq(λ/pl + λ′)

p2l
+ q(λ/pl + λ′)

)

+

l∑
s=1

δ(λ, l)K1(L, s)

×
∑

λ′∈(Lp
s
)
pl−s

n−p2(l−s)q(λ/pl−s+λ′)∈p2(l−s)Z

g

(
ps, χRp ,

n− p2(l−s)q(λ/pl−s + λ′)

p2(l−s)

)

× c
(
λ/pl−s + λ′,

n− p2(l−s)q(λ/pl−s + λ′)

p2(l−s) + q(λ/pl−s + λ′)

)
+

2l−1∑
s=l+1

δ(ps−lλ, l)K2(L, s)g(p2, χRp , n− q(ps−lλ))c(ps−lλ, p2(s−l)n)

+ c(plλ, p2ln).

(5.15)

Here R =
∑s−1
i=0 (s − i)ni with ni defined in Lemma 4.5, δ(λ, x) is defined in

Theorem 5.2 and χp =
(
·
p

)
.

Remark 5.5. It can be extracted directly from the following proof that the group
(Lps)pl−s for s = l in (5.15) has to be interpreted as the zero element of L. In
order to have (5.15) as simple as possible we do not specify a separate formula for
the case s = l.

Proof. Using (5.1) the definition (3.23) yields

f |k,L T (p2l) = pl(k−2)

(∑
λ∈L

(fλ |k α)(eλ |L α) (5.16a)

+

2l−1∑
s=1

∑
h∈(Z/psZ)∗

∑
λ∈L

(fλ |k βh,s)(eλ |L βh,s) (5.16b)

+
∑

b∈Z/p2lZ

∑
λ∈L

(fλ |k γb)(eλ |L γb)

 . (5.16c)
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For (5.16b) the formulas of Theorem 5.2 suggest to distinguish between the two
cases s 6 l and s > l.

Lemma 4.5 can be applied to the sum Gh,s(L) which occurs in the formulas of
Theorem 5.2. We obtain

Gh,s(L) = χRp (h)Gs(L). (5.17)

This identity will be used in the following for both of the above mentioned cases.
First, we consider the case s 6 l.

pl(k−2)
∑

h∈(Z/psZ)∗

∑
λ∈L

(fλ |k βh,s)(eλ |L βh,s)

= p−sD/2p(k−2)lp−sk

×
∑

h∈(Z/psZ)∗

∑
λ∈L

fλ

(
p2l−sτ + h

ps

)
δ(λ, s)e

(
− h

ps
q(λ)

)
Gh,s(L)epl−sλ

= K1(L, s)
∑
λ∈Lps

 ∑
n∈Z+q(λ)

c(λ, n)g(ps, χRp , n− q(λ))e

(
p2l−snτ

ps

) epl−sλ,

where g(ps, χRp , n−q(λ)) is one of the quadratic Gauss sums defined in Lemma 4.1.
By the exact sequence (2.1) applied to Lps every λ ∈ Lps can be written as
ν/pl−s + ν′ where ν ∈ Lpl and ν′ ∈ (Lps)pl−s . We therefore obtain for the last
expression above

K1(L, s)
∑
ν∈Lpl

∑
ν′∈(Lps )

pl−s

∑
n∈Z+q(ν/pl−s+ν′)

c(ν/pl−s + ν′, n)

× g(ps, χRp , n− q(ν/pl−s + ν′)))e(p2(l−s)nτ)eν

= K1(L, s)
∑
ν∈Lpl

∑
ν′∈(Lps )

pl−s

∑
n∈p2(l−s)(Z+q(ν/pl−s+ν′))

c(ν/pl−s + ν′, n/p2(l−s))

× g(ps, χRp , n/p
2(l−s) − q(ν/pl−s + ν′))e(nτ)eν .

(5.18)

Any n = p2(l−s)(r+q(ν/pl−s+ν′)) ∈ p2(l−s)(Z+q(ν/pl−s+ν′)) can be understood
as an element of Z+q(ν) where the integer part is given by p2(l−s)r+pl−sb(ν, ν′)+
p2(l−s)q(ν′). Summing over Z + q(ν), the last sum of (5.18) can be written as

K1(L, s)
∑
ν∈Lpl

∑
n∈Z+q(ν)

∑
ν′∈(Lp

s
)
pl−s

n−p2(l−s)q(ν/pl−s+ν′)∈p2(l−s)Z

× c
(
ν/pl−s + ν′,

n− p2(l−s)q(ν/pl−s + ν′)

p2(l−s) + q(ν/pl−s + ν′)

)
× g

(
ps, χRp ,

n− p2(l−s)q(ν/pl−s + ν′)

p2(l−s)

)
e(nτ)eν .
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It remains to treat the case l < s. Theorem 5.2 combined with identity (5.17)
yields

pl(k−2)
∑

h∈(Z/psZ)∗

∑
λ∈L

(fλ |k βh,s)(eλ |L βh,s)

= K2(L, s)
∑

h∈(Z/psZ)∗

∑
λ∈L

fλ

(
p2l−sτ + h

ps

)
δ(λ, l)χp(h)Re

(
− h

ps
q(λ)

)
×

∑
%∈L

ps−l%=λ

e(b(−%, hλ/pl)e%.

By a straightforward calculation, using the fact ps−lρ = λ, we find
e( hps q(λ))e(−b(ρ, hλ/pl)) = e(− h

ps q(λ)). The last expression above can then be
written as

K2(L, s)
∑
λ∈Lpl

∑
ρ∈L

ps−lρ=λ

×
∑

n∈Z+q(λ)

c(λ, n)

 ∑
h∈(Z/psZ)∗

χp(h)Re

(
h(n− q(λ))

ps

) e(nτ/p2(s−l))eρ.

The equation ps−lρ = λ has a solution if λ ∈ Lps−l . This is in particular fulfilled
for all λ ∈ Lpl since l > s− l. The set of solutions is given by λ/ps−l +Lps−l . We
obtain

K2(L, s)
∑
λ∈Lpl

∑
λ′∈L

ps−l

∑
n∈Z+q(λ)

c(λ, n)g(ps, χRp , n− q(λ))e(nτ/p2(s−l))eλ/ps−l+λ′ .

By the exact sequence (2.1) we can write each element of L as λ/ps−l + λ′ and
therefore replace the sums over Lpl and Lps−l with a sum over L:

K2(L, s)
∑
µ∈L

ps−lµ∈Lp
l

∑
n∈Z+q(ps−lµ)

c(ps−lµ, n)g(ps, χRp , n− q(ps−lµ))e(nτ/p2(s−l))eµ.

From Lemma 4.1 it can be deduced that the quadratic Gauss sum g(ps, χRp , n −
q(ps−lµ)) is zero unless ps−1 | (n − q(ps−lµ)). Since s − 1 > 2(s − l) this is in
particular satisfied for all n with n−q(ps−lµ) ∈ p2(s−l)Z. Taking this into account
we can replace n with p2(s−l)m where m runs through Z + q(µ). We obtain

K2(L, s)
∑
µ∈L

ps−lµ∈Lp
l

∑
m∈Z+q(µ)

c(ps−lµ, p2(s−l)m)g(ps, χRp , p
2(s−l)(m− q(µ)))e(mτ)eµ.

The contributions to the Fourier expansion coming from α and γb can be treated
exactly in the same way as the contributions coming from the corresponding ma-
trices in proof of Theorem 14.2.9 in [St]. �
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The following corollary provides the Fourier expansion of the Hecke opera-
tor T (p2l) in the important special case where p is coprime to the level of L. It
generalises Proposition 4.3 and Theorem 4.10 of [BS].

Corollary 5.6. Let p be an odd prime which is coprime to the level N of the
lattice L and l ∈ N. Let f ∈Mk,L with the Fourier expansion

f(τ) =
∑
λ∈L

∑
n∈Z+q(λ)
n>0

c(λ, n)e(nτ)eλ.

Then
f |k,L T (p2l) =

∑
λ∈L

∑
n∈Z+q(λ)
n>0

b(λ, n)e(nτ)eλ

with

b(λ, n) = p(2k−2)lc

(
λ/pl,

n− p2lq(λ/pl)

p2l
+ q(λ/pl)

)
+ p(2k−2)l

l∑
s=1

p−skεDps

(
(−1)b

− |L|
ps

)(
2

ps

)D
× c

(
λ/pl−s,

n− p2(l−s)q(λ/pl−s)

p2(l−s) + q(λ/pl−s)

)
× g

(
ps, χDp ,

n− p2(l−s)q(λ/pl−s)

p2(l−s)

)
+ p(2k−2)l

2l−1∑
s=l+1

εDps

(
(−1)b

− |L|
ps

)(
2

ps

)D
× c

(
ps−lλ, p2(s−l)n

)
g
(
ps, χDp , n− q(ps−lλ)

)
+ c(plλ, p2ln).

(5.19)

Here, c(λ/pl, n−p
2lq(λ/pl)
p2l

+ q(λ/pl)) is zero unless n−p2lq(λ/pl) ∈ p2l and accord-

ingly c(λ/pl−s, n−p
2(l−s)q(λ/pl−s)
p2(l−s)

+ q(λ/pl−s)) is zero unless n− p2(l−s)q(λ/pl−s) ∈
p2(l−s)Z.

Proof. Since by the assumption (p,N) = 1 and each prime divisor of N is also
one of |L|, p and |L| are also coprime. Therefore,

Lp
s

= L

and
Lps = {0}

for all s = 1, . . . , 2l − 1. Taking this and the explicit formula (4.11) into account,
the Fourier expansion (5.19) follows immediately from the general expansion in
(5.15). �
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The following corollary shows that the definition of Hecke operators given in
[BS] and the calculated Fourier expansion in Theorem 5.4 is compatible with Hecke
operators for Jacobi forms. Note that we only consider the special case l = 1 of
Theorem 5.4 since the comparison in the general case is very tedious.

Corollary 5.7. Let k be an integer, m ∈ N. Further, set L = Z with the quadratic
form q(x) = −mx2. The associated bilinear form is b(x, y) = −2mxy. With this
choice of (L, b) one can easily show that L = 1

2mZ/Z ∼= Z/2mZ and Mk−1/2,L is
isomorphic to the space Jk,m of Jacobi forms of weight k and index m. Denote
with I the beforehand mentioned isomorphism. Then for all odd primes p and all
f ∈Mk−1/2,L the following identity holds

I(f |k−1/2 T (p2)) = (I(f) | Tp)

where Tp denotes the Hecke operator on Jk,m.

Proof. A detailed proof can be found in [St], Bemerkung 14.2.12. �
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