
An Adaptable, Modular, and Autonomous

Side-Channel Vulnerability Evaluator

Michael Zohner∗, Marc Stöttinger∗, Sorin A. Huss∗, and Oliver Stein†

∗Integrated Circuit and Systems Lab (ISS), Technische Universität Darmstadt,

Email: {zohner, stoettinger, huss}@iss.tu-darmstadt.de
†Bundesamt für Sicherheit in der Informationstechnik (BSI),

Email: oliver.stein@bsi.bund.de

Abstract—Computer aided design (CAD) tools are fundamen-
tal for ensuring a short time-to-market in nowadays chip design.
However, while CAD tools support the development of efficient
designs, they fail to support the designer with regard to side-
channel security. In order to better assist the designer, we propose
the AMASIVE (Adaptable Modular Autonomous SIde-Channel
Vulnerability Evaluator) framework that autonomously identifies
side-channel weaknesses in a design. Instead of implementing
some countermeasures straight forward, AMASIVE highlights
several design-specific vulnerabilities by exploiting an adaptable
attacker model. Thus, we aim at supporting the designer in
identifying countermeasures that are appropriate for the device’s
application scenario. In this contribution we introduce the general
concept of this novel framework and demonstrate its application
to a hardware implementation of the block cipher PRESENT.

I. INTRODUCTION

In the current design process the resistance of devices to

side-channel attacks is still rarely analyzed. Countermeasures

against side-channel attacks are selected after design comple-

tition, which makes this important step more dependent on the

available resources than on the actual security requirements,

cf. [1]. The reasons for a rather late consideration of side-

channel vulnerabilities are manifold such as the short time to

market, unpredictability of side-channel properties during the

design process, or an unidentified side-channel information

leakage of the algorithm. Thus, in many design processes,

side-channel vulnerabilities are detected too late to be taken

into account when deciding on the design architecture. This

situation is rather unfortunate, because the designer has access

to an enormous amount of knowledge about the device. So

she or he is in the position to perform a more accurate side-

channel analysis than an outside attacker ever could. However,

identifying, combining, and utilizing this knowledge is a

difficult task and requires experience in side-channel analysis

next to hardware design skills. Recently, there have been a

few contributions aimed to support the designer in securing a

device against side-channel attacks. In [2] Standaert et. al pro-

pose a unified framework to cope with side-channel issues of

implementations. This work introduces various formalisms and

methods to identify side-channel leakage in order to compare

the vulnerability of different designs. The first step towards an

intelligent insertion of side-channel related countermeasures

during the design phase of a hardware implementation is

proposed in [3]. Here, Regazzoni et al. introduce a tool set,

which may automatically transform each element of the design

netlist into the side-channel resistant logic style MCML. The

exchange of netlist elements is based on an evaluation to

identify security sensitive parts, which need to be implemented

in this logic style. Countermeasure implementation for side-

channel attacks in software implementations is tackled by

two approaches, which provide automated code analysis and

countermeasure integration, cf. [1], [4]. The work in [1]

applies a side-channel attack to the assembled code and

utilizes an estimation of the mutual information [2] to evaluate

and highlight vulnerabilities of a code section. The second

approach, proposed by Moss et al. [4], on the other hand,

features an automatic insertion of masks by evaluating the

secrecy requirements of an intermediate value in the program

code.

In two of these three approaches the designer has to formu-

late the leakage assumption for the side-channel vulnerabili-

ties, which presumes a designer with considerable expertise

in side-channel attacks. The proposal in [1] overcomes this

problem by utilizing an estimation of the mutual information

as side-channel distinguisher. Since the selected leakage model

has the greatest impact on the success of the attack, cf. [5], [6],

it would be reasonable to select the best model for each attack

scenario. In addition, the leakage model relies on an adequate

hypothesis function in order to identify the vulnerabilities in

the design.

In this contribution we introduce the AMASIVE framework,

which supports the designer in developing side-channel re-

sistant devices. In contrast to existing contributions, we do

not restrict ourselves to the automatic implementation of a

specific countermeasure [7], [8]. We rather focus on a support-

ive autonomous identification of side-channel vulnerabilities

and outline them to the designer so that the most adequate

countermeasure can be chosen. The strength of the framework

is the adaptability to various implementations by utilizing

several attacking procedures, leakage models, and side-channel

distinguishers. Similar to [2], we exploit an attacker model for

our analysis in order to secure an implementation specifically

to its threat scenario.

The remainder of the paper is organized as follows. Section

2 presents the basic ideas and concepts behind AMASIVE.

43978-1-4673-2340-6/12/$31.00 c©2012 IEEE

A
nalysis

Side-channel
evaluation

A
M

A
S

IV
E

 - M
odel

Im
plem

entation

Information mapping/
processingInformation gathering

Circuit

output(i)<=input
(i*4);
.....

Algorithm

Designer

AMASIVE-Graph

Attacker
model

c)b)a)

Fig. 1: Architecture of the AMASIVE Framework

In Section 3 we introduce a realization of AMASIVE, which

is able to analyze VHDL designs. Section 4 demonstrates the

concept of AMASIVE by performing a side-channel evalua-

tion on PRESENT. Finally, Section 5 concludes the paper.

II. DIAGNOSTIC LEAKAGE ANALYSIS

AMASIVE identifies side-channel vulnerabilities from three

steps as depicted in Figure 1. First, various information

is collected from an arbitrary set of sources, such as the

implementation of a cryptosystem or its designer (cf. Figure

1 a). Secondly, this information is combined into a graph,

which represents both the design, and an attacker model, which

specifies the attacker’s capabilities (cf. Figure 1 b). Lastly,

both the graph and the attacker model are used to identify and

to highlight side-channel vulnerabilities directly in the design

(cf. Figure 1 c). Note that due to the modular concept of the

framework, these steps can be extended by a fourth one, for

instance, by a suggestion of adequate countermeasures.

The graph and the attacker model are the basic parts of the

security analysis and represent the relation between the device

and the attacker in the real world. In the sequel, we first detail

the graph and the attacker model and then we specify the

general concept of the security analysis.

A. Graph Representation

The AMASIVE graph as depicted in Figure 1 b) models the

device in terms of its architectural and algorithmic features

and is introduced as a base for both the security analysis and

the communication with the designer. We define the graph

G as a relation between a set of nodes V , which represent

execution modules, and a set of edges E, which connect

nodes. Nodes have an input, which specifies the processed

values, and an output, which specifies the resulting values. We

distinguish three kinds of nodes: operations, entropy sources,

and registers. Operations describe modules, which modify

the processed data, such as a S-box module or an XOR

gate. Entropy sources model secret values, inserted during

the execution of the algorithm, i.e. keys or random numbers.

Lastly, registers are elements in an architecture that store data.

Additionally, the start nodes and the end nodes of the graph

are marked in order to identify the input to and the output of

an algorithm.

Ciphertext
exploitation

Attacker Model
Configuration

Actions:
 Decduction

 Reduction

 Transition-based leakage model

 State-based leakage model

Distinguisher, e.g.
correlation (CPA)

Known and security
sensitive values

Complexity
boundaries, e.g.
number of traces

a

b

c

d

S-1

1

E

S-1

2

E

S-1

3

E

S-1

0

E

0 4 8 12

a

key schedule
algorithm

c

b

d

Fig. 2: Scheme of the Attacker Model Configuration

B. Attacker Model

To evaluate the security of a device an attacker model is

introduced. This model represents an attacker, who aims at

recovering security sensitive information. Various features can

be assigned to the attacker model. Figure 2 depicts an example

for the attacker model as well as its assignable features.

We assign a local view V ⊆ (V × R) to the attacker

model that sets all nodes of the graph G = (V,E) in relation

with an entropy level, which specifies the uncertainty of the

attacker regarding the value of the node. Furthermore, we

create a set S ⊆ P(V), consisting of sets of security sensitive

nodes, which lead to a key recovery when known. With the

known and security sensitive nodes marked, the attacker model

knows both the starting points and the target points in the

graph. However, the attacker model still requires a set of

actions A for traversing the graph. These actions represent

the performable attacks of the attacker model. An action

a ∈ A is defined as a function a : V �→ V. A requirement

function RG : (V,A) �→ {0, 1} checks if the requirements

for performing an action a ∈ A in the attacker view V are

satisfied. RG is defined as

RG(V, a) =

{
1 , if requirements of a hold for V

0 , else.
(1)

The strength of the attacker can be increased or decreased

by adding or removing known nodes, actions, or by changing

the complexity boundaries. Note that the attacker model is

independent of the constructed graph and can be varied

without requiring changes in the graph.

C. Security Analysis

We express the security analysis as a game where the goal of

the attacker is to recover a set of security sensitive nodes from

the graph G = (V,E). The attacker is given a set of initially

known nodes I by adding these nodes with an entropy of zero

to his view V:

V =
⋃

∀n∈I

{(n, 0)}. (2)

44 2012 IEEE International Symposium on Hardware-Oriented Security and Trust

Algorithm 1 AMASIVE Security Analysis

Require: all nodes n ∈ V of the AMASIVE graph

G = (V,E) are contained in the view V

Require: set of security sensitive nodes S ⊆ P(V)
Require: ordered list of N actions to traverse the graph

A = {aG1 , a
G
2 , ..., a

G
N} with corresponding requirement

function RG : (V,A) �→ {0, 1}
Require: computational complexity boundary C

1: i = 1
2: repeat

3: if R(V, aGi) = 1 then

4: V = aGi (V)
5: i = 1
6: else

7: i = i+ 1
8: end if

9: until i > N

10: Attacker wins if ∃ {s1, s2, ..., sp} ∈ S with (sj , εj) ∈ V

such that (
∑p

j=1 εj) < C

Every node n, contained in the set (V \I), is added to V
+

together with its respective number of bits nb as entropy:

V
+ = V ∪

⋃
∀n∈(V \I)

{(n, nb)}. (3)

Subsequently, the attacker tries to apply actions in order to

recover information about further nodes. Algorithm 1 details

the security analysis game. The attacker wins the game if

the complexity for guessing a group of security sensitive

nodes is lower than his pre-defined computational complexity

bound. If the attacker wins the game, the designer is notified

by highlighting the recovered nodes and by visualizing the

corresponding sequence of actions that led to the node’s

recovery.

III. DIAGNOSTIC FRAMEWORK

In the following we present an implementation of AMA-

SIVE, which analyzes FPGA designs written in VHDL. First,

we describe the sources from which we collect the required

information for the analysis. Then we outline the construction

of the graph. Lastly, we detail the attacker model and the

subsequent steps performed in the security analysis.

A. Information Collection

The information we need from the hardware design is the

structure of the algorithm and a functional description of the

operations. Also, in order to specify the attacker, we need

information about the attacker model. In order to obtain this

information, we require the following sources: the VHDL

source code, its simulation results, and the designer.

The VHDL source code is parsed in order to extract the

structure of the algorithm. Furthermore, we define constraints

for the VHDL source code, in order to increase the readability

of the graph. Such constraints are, for instance, that each oper-

ation node in the graph is described in a separate VHDL entity.

We also introduce flags aimed for a direct communication of

the designer with the VHDL parser. By using such a flag the

designer can, e.g., enter names for nodes or define the type of

a VHDL entity.

The AMASIVE framework is able to map the complete

functionality of the investigated algorithm to the graph model.

Therefore, simulation procedures and the tools from the Xil-

inx, Inc. design suite ISE are utilized to generate a lookup

table, which describes the functionality of each entity. After

the functionality of the VHDL entity is provided for each node

in the graph, the graph is able to mimic the complete imple-

mented algorithm. Thus, the framework is able to simulate the

complete algorithm at a functional level even without detailed

information about the implementation.

We only query the designer if information can not be

obtained autonomously. In the current version, we ask the

designer to specify the attacker model by stating the public

and security sensitive values, specifying the leakage model,

and by defining the security constraints.

After collecting the information we compose it using an

XML scheme. In this XML scheme we define four different

elements: a register, an operation, an entropy source, and a

channel. Each element is attributed by general features such

as a name, an identifier, a bit size, and an entropy level.

B. Constructing the Graph

In order to construct the graph, we first need to instantiate

all elements of the XML description as node. The instantiation

ensures that each implemented module is also modeled in the

graph. When each entity is instantiated, loops in the VHDL

code are unrolled. From the instantiation of the entities we

obtain a node for every execution of a module on the FPGA.

In the next step the nodes are connected using the channel

elements. The connected nodes result in a graph that represents

the steps in the execution of the algorithm. Subsequently, per-

mutations are dissolved, since on a FPGA they are represented

as a permutation of wires. The dissolving is done by using the

permutation lookup table, gained from the simulation of the

VHDL design, and connecting the outputs of the previous and

the inputs of the next elements of the permutation.

The last step in the process of constructing the graph is

the assignment of non-trivial features to the nodes. These

attributes describe features that have to be computed from a

combination of directly readable features. Non-trivial features

are for instance the invertibility of functions, the bijectivity of

functions, and the vulnerability of a function with respect to

side-channel attacks.

C. Graph Analysis

After the construction of the graph, the security analysis is

performed. As a first example distinguisher for the security

analysis we implemented the CPA. An essential step of the

CPA is to make appropriate leakage predictions by formulating

hypotheses about exploitable intermediate values or register

transitions in the algorithm cf. [6]. The identification of a

suitable hypothesis function can currently be performed for

2012 IEEE International Symposium on Hardware-Oriented Security and Trust 45

Algorithm 2 Hypothesis function identification for HW model

Require: view V for the graph G = (V,E)
Require: computational complexity boundary C

1: Identify operation node op, where node i and en-

tropy node e are input nodes, o is the output node,

{(i, εi), (e, εe), (o, εe)} ⊆ V holds, and εe > 0
2: if εi = 0 and εo > 0 then

3: hypothesis function h = HW (op (i, e))
4: else if εi > 0 and εo = 0 and op is invertible then

5: hypothesis function h = HW (op−1(o, e))
6: else

7: return error: no suitable hypothesis found

8: end if

9: if εe < C then

10: return hypothesis function h

11: else

12: return error: no suitable hypothesis found

13: end if

the Hamming weight (HW) model and for distance based

leakage models such as the Hamming distance (HD) model.

However, due to the modularized design of AMASIVE, further

leakage models (such as the glitch model or bit models) will

be integrated soon. Also note that further side-channel attacks,

such as the template attack, can be integrated into the analysis.

In order to start the security analysis of the graph, the

attacker model has to be defined using the specifications of

the information collection phase. The view of the attacker is

initialized by assigning all public nodes the entropy zero and

all non-public nodes their corresponding bit-size as entropy.

The security sensitive nodes assembled into groups and then

added to the set of security sensitive nodes. Subsequently, the

actions for the attacker model are assigned. Currently, we have

defined four actions: deduction, reduction, leakage exploitation

using the Hamming weight model, and leakage exploitation

using the Hamming distance model. The framework uses these

actions in order to automatically analyze the resulting graph.

The simplest action, the deduction, evaluates an operation or

propagates a value and sets the entropy of the corresponding

node in the attacker view to zero. The deduction requires either

the input of a node or the output to be known and the node

to be invertible.

The reduction infers information about a node and reduces

it’s entropy. A reduction currently requires an associated node

to have a reduced complexity or an operation to have certain

features such as non-surjectivity.

A power attack based on the Hamming weight model sets

the entropy of the corresponding node in the attacker view

to zero. The requirement of a power attack based on the

Hamming weight model is a suitable hypothesis function. The

process of finding such a function is denoted in Algorithm 2.

A power attack based on the Hamming distance model sets

the entropy of all nodes, included in the hypothesis function, to

zero. However, finding the required hypothesis function for the

Algorithm 3 Hypothesis function identification for HD model

Require: view V for the graph G = (V,E)
Require: computational complexity boundary C

1: Identify register transition from register node (p, 0) ∈ V to

register node (r, εr) ∈ V with entropy source (e, εe) ∈ V

along the path and εr, εe > 0
2: if a suitable register transition is identified then

3: for all edges i from/to r do

4: traverse graph along i until node (n, 0) ∈ V is

reached

5: add path from i to n to hypothesis function ht
6: end for

7: hypothesis function h = HD(p, ht)
8: compute total entropy E of h by summing up all entropy

values for all entropy source nodes in h

9: if E < C then

10: return h

11: end if

12: end if

13: return error: no suitable hypothesis found

Hamming distance model is somewhat more complex due to

the requirement of a register transition. Algorithm 3 depicts the

procedure of finding a hypothesis function for the Hamming

distance model.

The security analysis of the graph is then performed as

stated in Algorithm 1 using the defined actions. If the attacker

wins the security analysis, then the actions and nodes, which

led to the recovery of the secret, are displayed. Furthermore,

in order to determine the practical feasibility of the attack,

a CPA is performed for each identified hypothesis function.

Every hypothesis function is output into a C-source-file and

executed by a MATLAB script that implements a CPA. The

feasibility of each hypothesis function is verified by checking

whether the required number of measurements is within the

complexity boundary. If the CPA is succeeds within the pre-

defined complexity boundary, the node is deemed recoverable

and its entropy is updated according to the results of the

CPA. Otherwise, the node is deemed not recoverable, and all

consecutive actions have to be re-evaluated.

When all side-channel attacks have been performed and

their feasibility has been evaluated, the designer is notified

whether the mounted attack was successful and how high the

complexity for recovering each node was. The designer can

then evaluate for which nodes he should implement counter-

measures. Afterwards he can then rerun the security analysis

in order to quantify the achieved security improvement.

IV. EVALUATION ON THE BLOCK CIPHER PRESENT

In this section we demonstrate an analysis of the block

cipher PRESENT [9] by exercising the AMASIVE framework.

In order to increase the understandability, we focus on the

analysis of the first and the last round. Figure 3 a) depicts

the block diagram of a PRESENT implementation, which

46 2012 IEEE International Symposium on Hardware-Oriented Security and Trust

AMASIVE-Graph Model Based Hypotheses

Ciphertext
Exploitation

Data Flow Data Path

Round30

Round 31

Round 0

ARK

Reg.

Sbox

P-
layer

ARK

P-layer

Sbox.

Reg.

ARK

Reg.

0

0

12

12

4

4

8

8

0

0

3

3

1

1

2

2

0 4 8 12

P-layer

Sbox.

Reg.

ARK

Reg.

0

0

12

12

4

4

8

8

0

0

3

3

1

1

2

2

RK

RK 0

RK 1

RK 31

Plaintext

Cipher

Plaintext Exploitation

S

4 E

S

8 E

S

12 E

S

0 E

E E EE

0 1 2 3

S-1

1

E

S-1

2

E

S-1

3

E

S-1

0

E

0 4 8 12

gen.

c)

gen.

b)a)

Fig. 3: PRESENT represented as an AMASIVE graph

processes a 64 bit input message and a 80 bit key. In each

round this encryption algorithm separates the 64 bit wide input

into 4 bit blocks and XORes them with 4 bit blocks of the

64 bit round key. The result of this operation is then stored

in a register, from where it is substituted and permuted. In

total, PRESENT performs 31 rounds as well as an additional

last round, where the last round key is added and the result is

stored in a register.

1) Information Collection: The workflow starts with the

analysis of PRESENT by parsing its VHDL representation

and by producing an XML description, which contains the

instantiated modules AddRoundKey, S-box, P-layer, and the

channels. We obtain the following elements in the XML de-

scription: two operations (AddRoundKey (ARK) and S-box),

a permutation (P-layer), a register (Reg), an entropy source

(Entropy), and the channels, which connect these elements.

Next, we simulate the design in order to obtain a functional

description of the operations. Thus we obtain a 16×16 lookup-

table for the S-box and a 256× 16 lookup-table for the ARK

operation. The permutation P-layer is stored in an 64 × 2
lookup-table.

Lastly, we define our attacker model. We assume the input

and output of the algorithm to be known, since this is a

common scenario in side-channel analysis. Subsequently, we

mark all Entropy elements as security sensitive and define that

the knowledge of all Entropy elements of each round leads to

the recovery of the secret key. We allow our attacker to be

able to run a brute-force attack up to a complexity of 232

and perform up to 10.000 measurements. Finally, we grant

the attacker the ability to execute a deduction, a reduction,

and a CPA using the Hamming distance model.

2) Model Building: In order to construct the graph, we

instantiate each XML element the number of times it will be

executed. The numbers of instantiations of each element for

the PRESENT example are depicted in Table I. Subsequently,

we connect the channels to the nodes and dissolve the per-

mutations using the P-layer lookup-table. A fragment of the

resulting graph is visualized in Figure 3. This figure details

the processing of four 4 bit blocks for the first and the last

round. Note that the total graph for the first and the last round

consists of four times the graph in Figure 3 b).

Next, we evaluate non-trivial features of the operations. The

S-box is determined to be bijective and invertible. The ARK

operation, which is an XOR between two nodes, is determined

to be non-injective and invertible if at least one of both input

nodes and the output node are known.

3) Security Analysis: After generating the graph, we can

perform the security analysis utilizing the pre-defined attacker

model. Figure 3 b) depicts the first and last round of the

resulting graph and can be referred to for the visualization

of the security analysis. Since we have multiple nodes of one

type in each round, we denote the i-th node n of round d

as nd
i . In the following we denote the ARK nodes as x, the

S-box nodes as s, the Reg nodes as r, the Entropy nodes as

e, the Input nodes as i, and the Output nodes as o. Also, we

use their corresponding capital letters, together with a round

index, to denote the set of all associated nodes of a round.

We begin the analysis by initializing the view V of the

attacker with the input nodes Input and output nodes Output:

V =
⋃

∀n∈(Input∪Output){(n, 0)}.

The remaining nodes are added to V with their corresponding

bit-size as entropy. Then we add the Entropy nodes to the

security sensitive nodes by grouping all nodes ed ∈ V of one

round into:

S =
⋃

0≤d<32{{e
d
0, e

d
1, ..., e

d
15}}.

Finally, we determine and prioritize the available actions. The

priority of the actions is: deduction dedG, reduction redG, and

the CPA using the Hamming distance leakage model HDG.

After the initialization we start the security analysis of the

AMASIVE graph. The first deduction dedG on V yields

V
+ = dedG(V) = {(n, ε) ∈ V|n �∈ R31} ∪ (R31 × 0).

In other words, we can simply recover the value of the last

round’s Reg nodes R31 = {r310 , r311 , ..., r3115} by propagating

the value of the output. We set V = V
+ and since dedG

successfully recovered some nodes, we can again perform

dedG on the updated V, yielding:

V
+ = dedG(V) = {(n, ε) ∈ V|n �∈ X31} ∪ (X31 × 0).

Thus, the second dedG yields the value of the ARK nodes of

the last round X31 = {x31
0 , x31

1 , ..., x31
15} by simply propagat-

ing the value from the recovered Reg nodes R31.

We again set V = V
+ and observe that we can not apply

dedG to V, since no value can be propagated and no operation

evaluated. Thus, we verify the requirements for the reduction

XML elements ARK S-box P-layer Reg Entropy Channel

initially - - - 16 - 16
per round 16 16 1 16 16 64
last round 16 - - 16 16 48

Total 512 496 31 528 512 2048

TABLE I: Numbers of resulting nodes in the AMASIVE graph

2012 IEEE International Symposium on Hardware-Oriented Security and Trust 47

10.000 10.200 10.400 10.600 10.800 11.000
0

0,1

0,2

0,3

0,4

0,5

Samples

A
bs

(C
or

re
la

tio
n)

Fig. 4: CPA on PRESENT with hypothesis he31
0

and also observe that it can not be applied to V. Thus,

we verify the requirement for the CPA using the Hamming

distance model HDG. Indeed, by applying Algorithm 3 to V

we obtain hypotheses for all nodes in E0 and E31, which are

visualized in Figure 3 c). In the following we use the short

notation nj,b to refer to the b-th most significant bit of nj .

The hypothesis function he0
0

for element e00 ∈ E0 is

he0
0

= HD(r00, r
1
0)

= HD(S(i0 ⊕ e00), (x
1
0,0||x

1
1,0||x

1
2,0||x

1
3,0)),

where x1
j,b = S(ij ⊕ e0j)b ⊕ e1j,b for 0 ≤ j < 16. Analyzing

the hypothesis function of e00 shows that we also have to make

a hypotheses for e01, e02, e03, and e10. This raises the complexity

of a CPA to (24)5 = 220, which still lies in the predefined

complexity boundary of 232. Thus, we obtain a successful

Hamming distance hypothesis and are able to set the entropy

for the nodes e00, e01, e02, e03, and e10 to zero.

The hypothesis function he31
0

for e310 ∈ E31 is:

he31
0

= HD(r300 , r310)

= HD(S−1(s310,0||s
31
4,0||s

31
8,0||s

31
12,0), r

31
0)),

where s31j,b = oj,b⊕e31j,b. In contrast to the hypothesis he0
0

, he31
0

only requires a complexity of 4 bit, making an attack more

likely to succeed with a smaller number of measurements.

Since we found a hypothesis for HDG, we can update V:

E = E0 ∪ E1 ∪ E31

V
+ = HDG(V) = {(n, ε) ∈ V|n �∈ E} ∪ (E× 0).

In theory, the next step would be to use dedG again on the

updated V, which would result in the recovery of X0 and X31,

but we will stop the analysis here, since we have collected

sufficient information. The current set of V contains the round

keys of the first, second, and last round. Due to the key-

schedule of PRESENT, using one round key we can already

recover the actual key by guessing the 216 remaining bits.

However, in order to verify the practicability of the attack,

we mounted a CPA using the hypotheses he31
i

on a SASEBO-

II FPGA, which executed the described PRESENT imple-

mentation. We performed 10.000 measurements and used the

Pearson correlation coefficient as comparison method between

the hypotheses and power traces. The resulting correlation of

the attack on the last round of PRESENT using he31
0

is depicted

in Figure 4 and confirms the correctness of the hypothesis.

V. CONCLUSION

In this paper we presented an adaptable framework for side-

channel security analysis, called AMASIVE. This framework

represents the implemented algorithm during its workflow as a

dedicated graph and exploits a sophisticated and adaptable at-

tacker model in order to determine side-channel vulnerabilities

in the implementation.

We first introduced the general concept of our framework.

Subsequently, we discussed a realization, which analyzes

VHDL-based hardware implementations. Finally, we demon-

strated the general concept of our framework by exercising

it on the block cipher PRESENT and identified hypotheses

functions for a CPA, which we verified by performing a side-

channel attack.

In future work we will extend the security analysis by a

fourth step: the suggestion of countermeasures. We will add

new models to the security analysis, such as the glitch and the

bit model. Also, we will considerably extend the capabilities of

the attacker by introducing new attack and evaluation methods,

such as the template attack and the mutual information metric.

Moreover, we will apply the framework to further algorithms

to analyze its performance.

ACKNOWLEDGEMENTS

The work presented in this contribution was supported

by the German Federal Ministry of Education and Re-

search (BMBF) in the project RESIST through grant number

01IS10027A. We would like to thank André Seffrin for pro-

viding us with his VHDL Parser.

REFERENCES

[1] A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne, “A first
step towards automatic application of power analysis countermeasures,”
in DAC, L. Stok, N. D. Dutt, and S. Hassoun, Eds. ACM, 2011, pp.
230–235.

[2] F.-X. Standaert, T. Malkin, and M. Yung, “A unified framework for the
analysis of side-channel key recovery attacks,” in EUROCRYPT, ser.
Lecture Notes in Computer Science, A. Joux, Ed., vol. 5479. Springer,
2009, pp. 443–461.

[3] F. Regazzoni, A. Cevrero, F.-X. Standaert, S. Badel, T. Kluter, P. Brisk,
Y. Leblebici, and P. Ienne, “A design flow and evaluation framework for
dpa-resistant instruction set extensions,” in CHES, ser. Lecture Notes in
Computer Science, C. Clavier and K. Gaj, Eds., vol. 5747. Springer,
2009, pp. 205–219.

[4] A. Moss, E. Oswald, D. Page, and M. Tunstall, “Automatic insertion of
dpa countermeasures,” IACR Cryptology ePrint Archive, vol. 2011, p. 412,
2011.

[5] E. Oswald, L. Mather, and C. Whitnall, “Choosing distinguishers for
differential power analysis attacks,” in Non-Invasive Attack Testing Work-

shop, September 2011.
[6] M. A. Elaabid and S. Guilley, “Practical improvements of profiled side-

channel attacks on a hardware crypto-accelerator,” in AFRICACRYPT, ser.
Lecture Notes in Computer Science, D. J. Bernstein and T. Lange, Eds.,
vol. 6055. Springer, 2010, pp. 243–260.

[7] W. He, E. de la Torre, and T. Riesgo, “A precharge-absorbed dpl logic
for reducing early propagation effects on fpga implementations,” in
ReConFig, P. M. Athanas, J. Becker, and R. Cumplido, Eds. IEEE
Computer Society, 2011, pp. 217–222.

[8] T. Popp and S. Mangard, “Implementation aspects of the dpa-resistant
logic style mdpl,” in ISCAS. IEEE, 2006.

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-
lightweight block cipher,” in CHES, ser. Lecture Notes in Computer
Science, P. Paillier and I. Verbauwhede, Eds., vol. 4727. Springer, 2007,
pp. 450–466.

48 2012 IEEE International Symposium on Hardware-Oriented Security and Trust

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

