APPENDIX

A SVM - APPLICATION EXAMPLES

A.1 Hand-written Digit Recognition

The first real-world task on which Support Vector machines were tested was the problem of hand-written character recognition. This is a problem currently used for benchmarking classifiers, originally motivated by the need of the US Postal Service to automate sorting mail using the hand-written ZIP codes. Different models of SVM have been tested on the freely available datasets of digits: USPS (United States Postal Service) and NIST (National Institute for Standard and Technology).

For USPS data, where the input space is 256 dimensional, the following polynomial and Gaussian kernel were used:

\[
K(x, y) = \left(\frac{\langle x \cdot y \rangle}{256}\right)^d
\]

\[
K(x, y) = \exp\left(-\frac{\|x - y\|^2}{256\sigma^2}\right)
\]

for different values of \(d\) and \(\sigma\).

For polynomial kernels, degrees from 1 to 6 have been tested, for Gaussian kernels, values of \(\sigma\) between 0.1 and 4.0. The USPS are reported to be totally separable with a maximal margin machine starting from degree 3 whereas lower values with the 1-norm and 2-norm approach generated errors.

This whole set of experiments is particularly interesting, because the data have been extensively studied and there are algorithms that have been designed specifically for this dataset. The fact that SVM can perform as well as these systems without including any detailed prior knowledge is certainly remarkable.
A.2 Text Categorization

The task of text categorization is the classification of natural text (or hypertext) documents into a fixed number of predefined categories based on their content. This problem arises in a number of different areas including email filtering, web searching, office automation, sorting documents by topic and classification of news agency stories. Since a document can be assigned to more than one category this is not a multiclass classification problem, but can be viewed as a series of binary classification problems, one for each category.

There are many resources in this field available in the internet, so we won’t go into detail here. But one interesting work should be noted here which also led to a library for SVMs with its own algorithm:

The text categorization of the Reuters’ News from Joachims with the own created SVMLight algorithm [Joa98].
B LINEAR CLASSIFIERS

B.1 The Perceptron

The first iterative algorithm for learning linear classification is the procedure proposed by Frank Rosenblatt in 1956 for the Perceptron [Nel00].

In the neural network literature another view on the Perceptron is given, which is mostly more understandable (see figure B.1.1).

\[\sum x_1 x_2 \ldots x_n \]

\[w_1 \]

\[W_n \]

\[\Sigma \]

\[1 \]

\[-1 \]

Figure B.1.1: The neuronal network view on the perceptron for binary classification. The input vector \(\mathbf{x} = (x_1, \ldots, x_n) \) is “weighted” by multiplying each element with the corresponding element of the weight vector \(\mathbf{w} = (w_1, \ldots, w_n) \). Then the products are added up which is equivalent to \(\langle \mathbf{w} \cdot \mathbf{x} \rangle = \sum w_i x_i \). Last but not least the sum is “classified” by a threshold function, e.g. here the signum function: class 1 if sum ≥ 0, class 0 otherwise.

The bias is disregarded because of simplification.

It starts with an initial weight vector \(\mathbf{w}_0 \) (usually all zero) and adapts it each time a training example is misclassified by the current weights.
A fact that needs to be stressed here is, that the weight vector and the bias are updated directly in the algorithm, something that is referred to as
the **primal** form in contrast to an alternative **dual** representation which will be introduced below.

The whole procedure used is guaranteed to converge if and only if the training points are able to be classified by a hyperplane. In this case the data is said to be **linearly separable**. If not so the weights (and the bias) are updated infinitely each time a point is misclassified and so the algorithm isn't able to converge and only jumps from one instable state to the next. In this case the data is **nonseparable**. For a detailed description of the algorithms see [Nel00].

The training of figure B.1.2 leads to the following decision function for some unseen data \(z \), that needs to be classified:

\[
 h(z) = \text{sgn}(\langle w_k \cdot z \rangle + b_k)
 = \text{sgn}(\sum w_i z_i)
\]

One can see in this algorithm that the perceptron 'simply' works by adding misclassified positive \((y = 1)\) training examples or subtracting misclassified negative \((y = -1)\) ones to an initial weight vector \(w_0 \).

So, if we assume an initial weight vector as the zero vector, overall the resulting weight vector is a **linear combination** of all training points:
\[\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i \]

(B.1.1)

with all \(\alpha_i \geq 0 \), because the sign is already given by the corresponding \(y_i \).

The main property of all \(\alpha_i \) is, that their value is proportional to the number of times a misclassification of \(\mathbf{x}_i \) has caused the weight to be updated.

Therefore once the linearly separable training set \(S \) has been correctly classified by the Perceptron and the weight vector has converged to its’ stable state one can think of the newly introduced vector \(\alpha \) as an alternative representation of the primal form, the so called dual form in dual co-ordinates:

\[
f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b = \sum w_i x_i + b
\]

(B.1.2)

And so the perceptron algorithm can be rewritten in the dual form as shown in figure B.1.3.

Figure B.1.3: The Perceptron Algorithm for training in dual form

Given a linearly separable training set \(S = ((\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)) \) with \(X \subseteq \mathbb{R}^n \), \(Y = \{-1, 1\} \), the learning rate \(\eta \in \mathbb{R}^+ \) and the initial parameters \(\alpha = 0, b = 0 \)

\(R = \max_{\mathbf{x} \in S} ||\mathbf{x}|| \)

Repeat

For \(i = 1 \) to \(n \)

If \(y_i (\sum_{j=1}^{n} \alpha_j y_j \langle \mathbf{x}_j \cdot \mathbf{x}_i \rangle + b) \leq 0 \) // mistake

\[
\alpha_i \leftarrow \alpha_i + 1 \\
b \leftarrow b + y_i R^2
\]

end if

end for

until no mistakes in for loop

Return \((\alpha, b)\) for defining the decision function
The learning rate is omitted here, because it only changes the scaling of the hyperplanes, but does not affect the algorithm with a starting vector of zero. Overall the decision function in dual representation for unseen data \(z \) is given by:

\[
h(z) = \text{sgn}\left(\langle w \cdot z \rangle + b\right) \\
= \text{sgn}\left(\sum \alpha_i y_i \langle x_i \cdot z \rangle + b\right) \\
= \text{sgn}\left(\sum \alpha_i y_i \langle x_i \cdot z \rangle + b\right)
\]

(B.1.3)

This alternative representation of the primal Perceptron Algorithm and the corresponding decision function has many interesting and important properties. Firstly the points in the training set which were harder to learn have larger \(\alpha_i \), but the most important thing that needs to be stressed here is the fact, that the training points \(x_i \) (and so the unseen points) only enter the algorithm in form of the inner product \(\langle x_i \cdot x \rangle \), which will have an enormous impact on the discussed algorithm(s) used by the Support Vector Machines, there referenced to as a so called *Kernel*.
B.2 A calculated example with the Perceptron Algorithm

The sourcecode for this example in dual form, written in Matlab, can be obtained here (see also B.1):

Matlab Files\Perceptron\DualPerceptron.m

The already defined workspace variables are here:
Matlab Files\Perceptron\DualPerceptronVariables_OR_AND.mat

For a better understanding of linear separability, we have a look at the most common used binary functions: AND, OR and XOR.

The calling convention is: \[\text{[weights bias alphas]} = \text{DualPerceptron}(X, Y)\].

\[
\begin{array}{c|c|c}
 x_1 & x_2 & y \\
 \hline
 x_1 & 0 & 0 & -1 \\
 x_2 & 0 & 1 & 1 \\
 x_3 & 1 & 0 & 1 \\
 x_4 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 x_1 & x_2 & y \\
 \hline
 x_1 & 0 & 0 & -1 \\
 x_2 & 0 & 1 & 1 \\
 x_3 & 1 & 0 & 1 \\
 x_4 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
 x_1 & x_2 & y \\
 \hline
 x_1 & 0 & 0 & -1 \\
 x_2 & 0 & 1 & 1 \\
 x_3 & 1 & 0 & 1 \\
 x_4 & 1 & 1 & -1 \\
\end{array}
\]

\(\Box\) \((y = -1) \); \(\bigcirc\) \((y = 1) \)

Figure B.2.1: Examples for linearly separable and non separable data

The OR- and the AND-datasets are both linearly separable while the XOR-data cannot be separated by means of one line. In these three cases the hyperplane is a line, because the inputspace is 2-dimensional (see Chapter 5).
Definition B.2.1 (Separability):

A training set \(S = \{(x_i, y_i) : x_i \in \mathbb{R}^n, y_i \in \{-1, +1\}\} \) is called separable by the hyperplane \(\langle w \cdot x \rangle + b = 0 \), if there exists both a vector \(w \) and a constant \(b \), such that following conditions are always true:

\[
\langle w \cdot x \rangle + b > 0 \quad \text{for} \quad y_i = 1 \\
\langle w \cdot x \rangle + b < 0 \quad \text{for} \quad y_i = -1
\]

The hyperplane defined by \(w \) and \(b \) is called a separating hyperplane.

In detail we only calculate the OR case:

After the dual-perceptron-algorithm has converged to its stable state, the vector \(\alpha \) consist of \((7 \ 3 \ 3 \ 0)' \) and the bias has a value of \(-2\).

So now we are able to define the weight vector (see equation B.1.1):

\[
w = 7 \cdot (-1) \cdot (0 \ 0)' + 3 \cdot 1 \cdot (0 \ 1)' + 3 \cdot 1 \cdot (1 \ 0)' + 0 \cdot 1 \cdot (1 \ 1)' = (3 \ 3)'
\]

The whole function of the hyperplane separating the OR-Dataset, here a line, is then defined as follows:

\[
f(x) = \langle w \cdot x \rangle + b = \sum w_i x_i + b = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot x - 2 = 3x_1 + 3x_2 - 2
\]

If you test the decision function of B.1.3 with the values \(x \) of the just used OR-table in figure B.1.4, the classification of each point is correct.

E.g. Test of \(x_1 = (0 \ 0)' \) and \(x_3 = (1 \ 0)' \):

\[
\text{sgn}\left(\begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} - 2\right) = \text{sgn}(3*0 + 3*0 - 2) = \text{sgn}(-2) = -1
\]

\[
\text{sgn}\left(\begin{pmatrix} 3 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 2\right) = \text{sgn}(3*1 + 3*0 - 2) = \text{sgn}(1) = 1
\]
C CALCULATION EXAMPLES

C.1 Chapter 4

• Lagrangian method on a constrained function in two variables and a graphical way to find a solution:

We search the local extremes of the function

\[f(x, y) = x^2 + 2y^2 \]

constrained by

\[g(x, y) = x + y = 3. \]

As a first intuition we choose a graphical way to do this:

First draw the constraint into the x-y-plane, then insert the isoquants (level lines) of the function \(f \) and last search level lines, which are cut by the constraint, to get an approximation where the optimum is.

Isoquants or level lines are defined as seen in figure C.1.1.

![Figure C.1.1: The function \(f(x, y) = e^{-x^2} \cdot e^{-y^2} \) and the corresponding level lines](image-url)
The above technique is shown in figure C.1.2.

And now the solution with the Lagrangian method. As seen in chapter 4, the Lagrangian for a objective function $f(x, y)$ in two variables with one constraint $g(x, y) = c$ is defined as:

$$ L(x, y, \alpha) = f(x, y) + \alpha(c - g(x, y)) $$

The necessary conditions for an optimal solution can then be stated as (find stationary point(s)):

$$ \frac{\partial}{\partial x} L(x, y, \alpha) = L_x = f_x + \alpha g_x = 0 $$
$$ \frac{\partial}{\partial y} L(x, y, \alpha) = L_y = f_y + \alpha g_y = 0 $$
$$ \frac{\partial}{\partial \alpha} L(x, y, \alpha) = L_\alpha = c - g(x, y) = 0 $$

Therefore the example can be reformulated in that way:

$$ L(x, y, \alpha) = (x^2 + 2y^2) + \alpha(3 - x - y) $$

And to find the stationary point(s):
This (linear) system of equalities has following solution:

\[x = 2, \ y = 1 \text{ und } \alpha = 4. \]

So the only stationary point of \(f(x, y) \) constrained by \(g(x, y) \) is \(x_0 = (2; 1) \).

Lagrangian method on a constrained function in three variables and two constraints.

We search the stationary points of the function \(f(x, y, z) = (x - 1)^2 + (y - 2)^2 + 2z^2 \) constrained by \(x + 2y = 2 \) and \(y - x = 3 \).

Recall the generalized Lagrangian function for equality constraints in chapter 3:

\[
L(x_1, \ldots, x_n; \alpha_1, \ldots, \alpha_k) = f(x_1, \ldots, x_n) + \sum_{i=1}^{k} \alpha_i (c_i - g_i(x_1, \ldots, x_n))
\]

for a function \(f \) of \(n \) variables and \(k \) equality constraints \(g_i \) of the form \(g_i(x_1, \ldots, x_n) = c_i \).

So the Lagrangian function for the example is:

\[
L(x, y, z, \alpha, \beta) = ((x - 1)^2 + (y - 2)^2 + 2z^2) + \alpha(2 - x - 2y) + \beta(3 - y + z)
\]

And the conditions for stationary points of \(L \) can be stated as:

\[
\begin{align*}
L_x &= 2(x - 1) - \alpha = 0 \\
L_y &= 2(y - 2) - 2\alpha - \beta = 0 \\
L_z &= 4z + \beta = 0 \\
L_\alpha &= 2 - x - 2y = 0 \\
L_\beta &= 3 - y + z = 0
\end{align*}
\]
And again we get a (linear) system with 5 unknowns in 5 variables, which can be easily solved and get as the only solution:

\[x = \frac{-6}{7}; y = \frac{10}{7}; z = \frac{-11}{7}; \alpha = \frac{-26}{7}; \beta = \frac{44}{7} \]

And so the only stationary point of \(f(x, y, z) \) with above constraints is \(x_0 = \left(-\frac{6}{7}; -\frac{10}{7}; \frac{-11}{7} \right) \).

C.2 Chapter 5

- **Equation 5.1:** \(f(x) = \langle w \cdot x \rangle + b = \sum w_i x_i + b \)

 With \(w = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, b = -3 \) and \(x = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \):

\[
\Rightarrow \quad f(x) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 5 \end{pmatrix} - 3 = 1 \cdot 2 + 3 \cdot 5 - 3 = 15
\]

- **Definition 5.1 (Margin):** Normalisation of \(w \) and \(b \) by

 \(w = \frac{1}{\|w\|} w \) and \(b = \frac{1}{\|w\|} b \).

 With \(w = \begin{pmatrix} 2 \\ 5 \end{pmatrix}, b = -3 \):

 \[
 \|w\| = \sqrt{2^2 + 5^2} = \sqrt{29} \Rightarrow \quad w_{\text{norm}} = \frac{\begin{pmatrix} 2 \\ 5 \end{pmatrix}}{\sqrt{29}}; b_{\text{norm}} = \frac{-3}{\sqrt{29}}
 \]

 So \(\|w_{\text{norm}}\| = \|b_{\text{norm}}\| = 1 \).
In words normalising means scaling a vector to a length of 1, e.g. \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \) can be seen as the diagonal in the unit quadrangle and therefore has a length of \(\sqrt{2} \), which is the same as \(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \). So scaling by \(\frac{1}{\text{"length"}} \) performs the step.

e.g. \(\| \mathbf{w}_{\text{norm}} \| = \sqrt{\frac{4}{29} + \frac{25}{29}} = \frac{29}{29} = 1 \)
D SMO PSEUDO CODES

D.1 Pseudo Code of original SMO

target = desired output vector
point = training point matrix

procedure takeStep(i1,i2)
 if (i1 == i2) return 0

 alph1 = Lagrange multiplier for i1
 y1 = target[i1]
 E1 = SVM output on point[i1] - y1 (check in error cache)
 m = y1*y2
 Compute L, H

 if (L == H)
 return 0

 k11 = kernel(point[i1],point[i1])
 k12 = kernel(point[i1],point[i2])
 k22 = kernel(point[i2],point[i2])

 eta = 2*k12-k11-k22

 if (eta < 0)
 { a2 = alph2 - y2*(E1-E2)/eta
 if (a2 < L) a2 = L
 else if (a2 > H) a2 = H
 }
 else
 {
 Lobj = objective function at a2=L
 Hobj = objective function at a2=H

 if (Lobj > Hobj+eps)
 a2 = L
 else if (Lobj < Hobj-eps)
 a2 = H
 else
 a2 = alph2
 }

 if (a2 < 1e-8)
 a2 = 0
else if (a2 > C-1e-8)
 a2 = C

if (|a2-alph2| < eps*(a2+alph2+eps))
 return 0

a1 = alph1+m*(alph2-a2)

Update threshold to reflect change in Lagrange multipliers
Update weight vector to reflect change in a1 & a2, if linear SVM
Update error cache using new Lagrange multipliers
Store a1 in the alpha array
Store a2 in the alpha array

return 1
endprocedure

procedure examineExample(i2)
 y2 = target[i2]
 alph2 = Lagrange multiplier for i2
 E2 = SVM output on point[i2] - y2 (check in error cache)
 r2 = E2*y2

 if ((r2 < -tol && alph2 < C) || (r2 > tol && alph2 > 0))
 if (number of non-zero & non-C alpha > 1)
 i1 = result of second choice heuristic

 if takeStep(i1,i2)
 return 1

 loop over all non-zero and non-C alpha, starting at random point
 { i1 = identity of current alpha

 if takeStep(i1,i2)
 return 1

 }

 loop over all possible i1, starting at a random point
 { i1 = loop variable

 if takeStep(i1,i2)
 return 1

 }

 return 0
endprocedure
main routine:

initialize alpha array to all zero
initialize threshold to zero
numChanged = 0;
examineAll = 1;

while (numChanged > 0 | examineAll)
{
 numChanged = 0;
 if (examineAll)
 loop I over all training examples
 numChanged += examineExample(I)
 else
 loop I over examples where alpha is not 0 & not C
 numChanged += examineExample(I)
 if (examineAll == 1)
 examineAll = 0
 else if (numChanged == 0)
 examineAll = 1
}

D.2 Pseudo Code of Keerthi’s improved SMO

procedure takeStep(i1, i2)
% Much of this procedure is same as in Platt’s original SMO pseudo code
 if (i1 == i2) return 0
 alph1 = Lagrange multiplier for i1
 y1 = target[i1]
 F1 = fcache[i1]
 m = y1*y2
 Compute L, H
 If (L == H) return 0

% Note: The definition of Fi is different from the Ei in Platt’s SMO algorithm.
% The Fi does not subtract any threshold.
\[K_{11} = \text{kernel}(\text{point}[i1], \text{point}[i1]) \]
\[K_{12} = \text{kernel}(\text{point}[i1], \text{point}[i2]) \]
\[K_{22} = \text{kernel}(\text{point}[i2], \text{point}[i2]) \]
\[\eta = 2K_{12} - K_{11} - K_{22} \]

if (\eta < 0)
{
 a2 = \alpha2 - y2*(F1-F2)/\eta
 \]
 if (a2 < L) a2 = L } else if (a2 > H) a2 = H
}

else
{
 Lobj = objective function at a2=L
 Hobj = objective function at a2=H
 if (Lobj > Hobj+\varepsilon)
 a2 = L
 else if (Lobj < Hobj - \varepsilon)
 a2 = H
 else
 a2 = \alpha2
 }

if (|a2-\alpha2| < \varepsilon*(a2+\alpha2+\varepsilon))
 return 0

a1 = \alpha1 + m*(\alpha2-a2)

Update weight vector to reflect change in a1 & a2, if linear SVM
Update fcache[i] for \textbf{I} in I_0 using new Lagrange multipliers
Store a1 and a2 in the alpha array

\% The update below is simply achieved by keeping and updating infor-
\% mation about alpha_i being 0, C or in between them. Using this to-
\% gether with target[i] gives information as to which index set I belongs

Update I_0, I_1, I_2, I_3 and I_4

\% Compute updated F values for i1 and i2 ...

fcache[i1] = F1 + y1*(a1-\alpha1)*k11 + y2*(a2-\alpha2)*k12
fcache[i2] = F2 + y1*(a1-\alpha1)*k12 + y2(a2-\alpha2)*k22

Compute (i_low, b_low) and (i_up, b_up) by applying equations (A) and (B)
using only i1, i2 and indices in I_0

return 1

endprocedure
procedure examineExample(i2)

 y2 = target[i2]
 alph 2 = Lagrange multiplier for i2

 if (i2 is in I_0)
 {
 F2 = fcache[i2]
 }

 else
 {
 compute F2 = F_i2 and set fcache[i2] = F2
 }

 % Update (b_low, i_low) or (b_up, i_up) using (F2, i2) ...

 if ((i2 is in I_1 or I_2) && (F2 < b_up))
 b_up = F2, i_up = i2
 else if ((i2 is in I_3 or I_4) && (F2 > b_low))
 b_low = F2, i_low = i2
 }

 % Check optimality using current b_low and b_up and, if violated, find an
 % index i1 to do joint optimization with i2

 optimality = 1

 if (i2 is in I_0, I_1 or I_2)
 {
 if (b_low – F2 > 2*tol)
 optimality = 0, i1 = i_low
 }

 if (i2 is in I_0, I_3 or I_4)
 {
 if (F2 – b_up > 2*tol)
 optimality = 0, i1 = i_up
 }

 if (optimality == 1)
 return 0

 % For i2 in I_0 choose the better i1 ...

 if (i2 is in I_0)
 {
 if (b_low – F2 > F2 – b_up)
 i1 = i_low
 else
 i1 = i_up
 }

 if takeStep(i1, i2)
 return 1

 else
return 0
endprocedure

main routine for Modification 1 (same as SMO):

initialize alpha array to all zero
initialize b_up = -1, i_up to any index of class 1
initialize b_low = 1, i_low to any index of class 2
set fcache[i_low] = 1 and fcache[i_up] = -1
numChanged = 0;
examineAll = 1;

while (numChanged > 0 | examineAll)
{
 numChanged = 0;
 if (examineAll)
 {
 loop I over all training examples
 \[\text{numChanged} += \text{examineExample}(I) \]
 }
 else
 {
 loop I over I_0
 \[\text{numChanged} += \text{examineExample}(I) \]
 }
 \% It is easy to check if optimality on I_0 is attained ...
 if (b_up > b_low - 2*tol) at any I
 exit the loop after setting numChanged = 0
 }
 if (examineAll == 1)
 examineAll = 0
 else if (numChanged == 0)
 examineAll = 1
}

main routine for Modification 2:

initialize alpha array to all zero
initialize b_up = -1, i_up to any index of class 1
initialize b_low = 1, i_low to any index of class 2
set fcache[i_low] = 1 and fcache[i_up] = -1
numChanged = 0;
examineAll = 1;

while (numChanged > 0 | examineAll)
{
 numChanged = 0;
if (examineAll)
{
 loop I over all training examples
 numChanged += examineExample(I)
}

else

% The following loop is the only difference between the two SMO modifica-
% tions. Whereas, in modification 1, the inner loop selects i2 from I_0
% sequentially, here i2 is always set to the current i_low and i1 is set to
% the current i_up; clearly, this corresponds to choosing the worst vio-
% lating pair using members of I_0 and some other indices.
{
 inner_loop_success = 1;

 do until ((b_up > b_low-2*tol) | inner_loop_success == 0)
 {
 i2 = i_low
 y2 = target(i2)
 alph2 = Lagrange multiplier for i2
 F2 = fcache[i2]
 Inner_loop_success = takeStep(i_up, i_low)
 numChanged += inner_loop_success
 }

 numChanged = 0
}
if (examineAll == 1)
 examineAll = 0
else if (numChanged == 0)
 examineAll = 1
}